

TIP/ix Programming Reference

IP-622

This edition applies to TIP/ix 2.5 and revision levels of TIP/ix 2.5 until
otherwise indicated in a new edition. Publications can be requested from
the address given below.

TIP Studio 2.5 reserves the right to modify or revise this document
without notice. Except where a Software Usage Agreement has been
executed, no contractual obligation between Inglenet Business Solutions
Inc and the recipient is either expressed or implied.

It is agreed and understood that the information contained herein is
Proprietary and Confidential and that the recipient shall take all
necessary precautions to ensure the confidentiality thereof.

If you have a license agreement for TIP Studio or TIP/ix with Inglenet
Business Solutions Inc, you may make copies of this documentation for
internal use. Otherwise, you may not copy or transmit this document, in
whole or in part, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of
Inglenet Business Solutions Inc.

Inglenet Business Solutions Inc

Toll Free: 1-800-387-9391

Website: http://www.Inglenet.com

Sales: Sales@Inglenet.com

Help Desk: HelpDesk@Inglenet.com

TIP Studio, TIP/ix, and TIP/30, and are registered trade marks of Inglenet
Business Solutions Inc:

This documentation occasionally makes reference to the products of
other corporations. These product names may be trade marks, registered
or otherwise, or service marks of these corporations. Where this is the
case, they are hereby acknowledged as such by Inglenet Business
Solutions Inc.

© Inglenet Business Solutions Inc, 1990-2011

http://www.inglenet.com/
mailto:Sales@Inglenet.com

 Program Control System (PCS)

April 2011 Confidential i

Contents

Program Control System (PCS) 7

Online Program Structure .. 7

Program Execution Stack .. 8

Fixed Order Parameter Passing .. 12

Linkage Items .. 13

Transaction End .. 26

PIB-LOCK-INDICATOR Action .. 27

PCS Subroutines ... 28

BATPEER - Peer-to-Peer from Batch 30

BATQUEUE - Queuing from Batch 31

TIPBITS - Convert Bytes to Bits .. 31

TIPBYTES - Convert Bits to Bytes 34

TIPDATE - Return Date ... 35

TIPDUMP - Force Program Dump 35

TIPDXC - Delayed Transfer Control 36

TIPJUMP - Direct Transfer Control 37

TIPFLAG - Flag Services .. 38

TIPFORK - Start Program at a Terminal 41

TIPFORK - Start Background Program 44

TIPFORKW - Start Program in New Window 46

TIPGRPS - Retrieve Elective Groups................................ 47

TIPGRPST - Change Elective Groups 48

TIPMSG - Retrieving Error Messages 50

TIPPEER - Peer-to-Peer Processing 53

TIPQUEUE - Record Queuing ... 61

TIPRTN - End Online Program .. 70

TIPSNAP - Snap Dump Memory 71

TIPSUB - Perform Program ... 72

TIPSUBP - Call a Subprogram .. 75

TIPTIMER - Timer Services .. 76

TIPUSR - Where is User ... 80

TIPUSRID - User Information .. 81

TIPUSRST – Set new User Information 82

TIPWINAP - Run a DOS or Windows Program 83

TIPXCTL - Transfer Control .. 84

Message Control System (MCS) 86

Provided Interfaces ... 86

MCS Screen Formats .. 87

MCS Subroutines .. 89

TIP Programming Reference

ii Proprietary IP-622

Program Control after CALL .. 90

MCS Interface Packet ... 91

MCS Subroutine CALLS.. 95

TIPASK - Display One Line and Return Answer 95

TIPASKYN - Display One Line and Return Answer 97

TIPERASE - Erase Screen .. 99

TIPLIST - Pick From a List .. 100

TIPMENU - Display Menu Bar ... 107

TIPMSGE - Send Error Text To Screen 108

TIPMSGEO - Define Deferred Error Text 110

TIPMSGI - Read Data from Screen Format 110

TIPMSGO - Output Data to Screen Format 114

TIPMSGOV - Overlay Current Screen 117

TIPMSGPR - Print Current Screen 119

TIPMSGRS - Pop the Current Screen............................. 120

TIPMSGRV - Force Full Screen Transmit 121

TIPTITLE - Display Title .. 122

FCC Modifications ... 122

Cursor Positioning ... 126

Context Sensitive Help .. 126

Help Text Definition ... 127

TSTWIN - Sample TIP Program 129

Line Oriented Terminal I/O .. 136

Function Key Input .. 137

BREAK - Check For Operator Break 137

PARAM - Parameterize Data .. 138

PROMPT - Prompt Terminal for Reply 140

PROMPTX8 - Prompt for Text ... 142

ROLL - Output Line & Roll Screen 143

ROLLPT - Set Terminal Roll Point 144

TEXT - Get One Line From Terminal 145

TEXT80 - Get One Line From Terminal 145

Direct Communications I/O .. 146

Direct Communications I/O ... 146

Message Formats .. 146

TC-DCOUT copybook ... 148

TIPTERM Functions .. 149

T-GET - Get Input .. 150

T-PUT - Output Message .. 152

Paging API ... 154

Introduction to Terminal Paging 154

TIPPAGE Paging API .. 155

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential iii

Function Calls .. 157

File Control System (FCS) 162

FCS Overview .. 162

FCS and Program Access ... 162

Record Locking ... 163

Journaling Online Files .. 163

Before Images ... 163

After Images .. 164

Dynamic Files .. 164

Setting a File in Sequential Mode.................................... 164

Record Locking ... 164

Call TIPFCS - Common Parameters 167

FCS Miscellaneous Functions ... 170

Techniques for Deleting Records 175

TIPFCS for Indexed Files .. 176

FCS-ADD - Indexed: Add Record 177

FCS-CLOSE - Indexed: Close File 178

FCS-DELETE - Indexed: Delete Record 178

FCS-ESETL - Indexed: End Sequential Mode 179

FCS-FLUSH - Indexed: Flush File 179

FCS-GET - Indexed: Read by Key 180

FCS-GET - Indexed: Read Sequential Key 181

FCS-GET-INDEX - Indexed: Read for Key 182

FCS-GET-KEYED - Indexed: Read by Key 184

FCS-GET-SEQ-LOCK - Indexed: WORKAROUND 185

FCS-GET-SEQ-NEXT - Indexed: Read Next Record 186

FCS-GET-SEQ-PREV - Indexed: Read Previous Record
... 187

FCS-GETRN - Indexed: Read by Record Number 188

FCS-GETUP - Indexed: Read With Lock 189

FCS-LOCK - Indexed: Lock Record 191

FCS-NEXT - Indexed: Get Next Record.......................... 193

FCS-NOUP - Indexed: Cancel Update 194

FCS-OPEN - Indexed: Open File 195

FCS-PREV - Indexed: Get Previous Record 196

FCS-PUT - Indexed: Rewrite Record 198

FCS-SETL - Indexed: Set Sequential Mode 199

FCS-SETL-BOF - Indexed: Set Sequential Mode 200

FCS-SETL-EOF - Indexed: Set Sequential Mode 201

FCS-SETL-EQ - Indexed: Set Sequential Mode 201

FCS-SETL-GT - Indexed: Set Sequential Mode 203

TIP Programming Reference

iv Proprietary IP-622

FCS-SKIP - Indexed: Skip Sequentially 204

TIPFCS for Direct Files ... 205

FCS-ADD - Direct: Add Record 205

FCS-CLOSE - Direct: Close File 206

FCS-DELETE - Direct: Delete Record 207

FCS-FLUSH - Direct: Flush File 208

FCS-GET - Direct: Read Record 208

FCS-GETUP - Direct: Read With Lock............................ 209

FCS-NOUP - Direct: Cancel Update 210

FCS-OPEN - Direct: Open File .. 211

FCS-PUT - Direct: Update Record 212

TIPFCS for Sequential Files .. 213

TIPFCS for Sequential Files .. 213

FCS-CLOSE - Sequential: Close File.............................. 213

FCS-GET - Sequential: Read Record 214

FCS-OPEN - Sequential: Open File 215

FCS-PUT - Sequential: Write A Record 216

TIPFCS for Dynamic Files ... 217

FCS-ACCESS - Dynamic: Access File............................ 218

FCS-ASSIGN - Dynamic: Assign File.............................. 219

FCS-CLOSE - Dynamic: Close File 220

FCS-CREATE - Dynamic Create File.............................. 220

FCS-GET - Dynamic: Read Record(s) 221

FCS-OPEN - Dynamic: Open File 223

FCS-PUT - Dynamic: Write Record(s) 224

FCS-SCRATCH - Dynamic: Scratch File 225

TIPFCS for Edit Buffers... 226

TIPFCS for Edit Buffers ... 226

FCS-ADD - Edit: Add/Insert Line 226

FCS-CLOSE - Edit: Close Buffer 227

FCS-DELETE - Edit: Delete Line 228

FCS-FLUSH - Edit: Flush Buffer 229

FCS-GET - Edit: Read Line ... 229

FCS-OPEN - Edit: Open Buffer 230

FCS-PUT - Edit: Replace Line .. 232

FCS-SCRATCH - Edit: Scratch Buffer 233

TIPFCS for Library Files.. 234

Library File Descriptor ... 235

FCS-CLOSE - Library: Close Element 236

FCS-GET - Library: Read Next Line................................ 236

FCS-NOUP - Library: Close Element (No update) 237

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential v

FCS-OPEN - Library: Open Element............................... 238

FCS-PUT - Library: Write Line .. 239

Transaction Suspend (TIPSUSPEND) 241

TIP Print Facility (TIPPRINT) ... 242

TIPPRINT Print Destinations ... 242

FCS-CLOSE - Close TIPPRINT Interface 245

FCS-FLUSH - Flush TIPPRINT Buffer 246

FCS-OPEN - Open TIPPRINT Interface 247

FCS-PUT - Output Print Line ... 253

Accessing TIP Journal Files ... 258

Journal and QBL File Record Format 258

Batch Journal File Access ... 265

FCS Batch Interface .. 266

Prepare to use batch Interface Routine 267

tipbatpi.o Interface Subroutine .. 267

Batch Commit and Rollback .. 268

PCXFER - PC File Transfer ... 270

File Transfer Interface copybooks 270

PCXFER Masking ... 274

Transfer from/to MS-DOS File ... 275

PCXFER Compression .. 275

FCS-OPEN - Open PCXFER Interface 275

FCS-GET - Input Record from computer......................... 277

FCS-PUT - Output Record to computer 278

FCS-FLUSH - Flush PCXFER Buffer 279

FCS-CLOSE - Close PCXFER Interface 280

Compiling and Testing Application Programs 282

Supported COBOL Compilers ... 282

Micro Focus COBOL ... 282

COBOL Makefiles .. 284

Debugging on-line programs ... 287

Embedded Debugging Statements 289

With Environment Variables from TIP Command Line: ... 304

Using Micro Focus cobanimsrv 305

Reference Tables .. 306

Hexadecimal - Decimal Conversion 306

Powers of 2 .. 307

Powers of 16 .. 307

ASCII Code Chart. ... 308

Standard Windows Character Set 308

TIP Programming Reference

vi Proprietary IP-622

National Replacement Character (NRC) Mappings 309

EBCDIC Code Chart .. 311

EBCDIC NRC Chart ... 311

Error Codes ... 312

Unix Shell Error ... 312

Micro Focus Cobol .. 312

Return Status from Unix System Calls 313

D-ISAM Error Codes ... 313

Information Management System(IMS) 314

TIP and IMS Interaction ... 315

Output for Input Queuing, from IMS Programs 316

IMS Status Codes ... 317

Known Differences between IMS and TIP 317

Index .. 318

 Program Control System (PCS)

April 2011 Confidential 7

Program Control System (PCS)

This chapter describes the facilities of the Program Control System
(PCS). All TIP facilities that provide program control are included in this
classification.

PCS, as a component of TIP, controls the execution of all transaction
programs and provides monitor-level functions for transaction programs.
Services are provided to support inter-program transfer of control and to
permit transaction programs to access timer facilities.

The facilities of PCS are available to transaction programs by issuing
standard programming language CALLs to subroutines provided with the
TIP system.

When transaction programs are linked, the appropriate subroutine object
modules are automatically included. In almost all cases, the subroutines
are very small interface routines that transfer control to the resident TIP
PCS routines.

When writing online programs, these facilities (especially those allowing
transfer of control from one program to another) permit the programmer to
use familiar control structures that are taken for granted in batch
programs.

All TIP programs, regardless of the manner in which they were actually
invoked, return control to the calling program by issuing a call to the
subroutine TIPRTN.

This standardized return mechanism means that all TIP programs may
operate either as a sub function or as a main function without the need for
special code in the program. This powerful feature facilitates the creation
of modular application systems.

Online Program Structure

TIP provides an environment for transaction programs. TIP provides
several areas of main storage for each transaction program. Some areas
are used to communicate information to the TIP system; other areas are
used as external work areas by the transaction program.

A transaction program may be servicing a number of users at one time. In
order to accomplish this, the program must have separate working areas
for each instance of the program.

TIP calls a transaction program exactly as if the program was a
subroutine of TIP. The addresses of the fixed areas of storage that are
allocated for use by the transaction program are passed as parameters to
the transaction program.

TIP Programming Reference

8 Proprietary IP-622

Online programs that operate in TIP native mode must be aware of the
parameters that are automatically passed by TIP. All transaction
programs are called either by TIP (if executed from the command line) or
another program (if called via the TIPSUB mechanism for example).

The following discussion illustrates the general structure of a TIP native
mode program. For convenience, the examples use COBOL syntax.

Program Execution Stack

Program Stack

TIP transaction programs operate in a stack oriented environment. The
standard system prompt is displayed by the TIP command line processor
to allow the terminal operator to enter a transaction name and any initial
command line parameters that may be required by the transaction. When
the program begins execution, it is considered to be executing on stack
level one - the initial TIP prompt is regarded as stack level zero.

If the initial program transfers control to another program without an
implied return of control (using TIPDXC or TIPXCTL), the called program
simply replaces the initial program on the current stack level.

Activation Record

On the other hand, if the initial program transfers control to another
program with an implied return of control, TIP does the following:

 Suspends execution of the calling program

 Saves the calling program's "activation record" (PIB, CDA, MCS, and
WORK-AREA).

 Allocates and initializes (to low values) the called program's activation
record

 Copies the calling program's CDA contents into the called program's
CDA (for a length of the shorter of the two CDA areas)

 Establishes the PIB, MCS, WORK-AREA for the called program and
initializes these areas

 Begins execution of the called program.

The called program is now running at the next higher stack level (level
"two" in this case).

Climbing the Stack

This process of "climbing" the stack may proceed up to 16 levels. When
any program issues a call to the TIPRTN subroutine, TIP does the
following:

 Loads the saved "activation record" of the program that preceded the
terminating program on the execution stack

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 9

 Copies the contents of the CDA of the terminating program to the
CDA of the previous program on the stack (for a length of the shorter
of the two CDA areas)

 De-allocates the PIB, MCS, and WORK-AREA of the terminating
program

 Resumes execution of the program that invoked the terminating
program.

Transferring Data to Another Program

The only information that is passed from stack level to stack level in either
direction is the contents of the CDA. Since different programs have
different CDA sizes, TIP only copies information between CDA areas for a
length of the shorter CDA; therefore, programs can invoke other
programs that may represent entire applications as if they were
subroutines.

The calling program's environment is restored intact (with the exception of
the CDA) whenever the called program (or any descendants of it)
terminates back down the stack. A program that is suspended in this
manner is not resumed until the stack returns to that point - this may be
minutes, hours, or days later!

Record-Oriented Program-to-Program Communications

TIP provides a number of functions that allow one program to exchange
data with another. These functions (TIPXCTL, TIPSUB, TIPFORK, etc)
are described in the PCS section of the Programming Reference. They
are similar in that they pass both control and data from program to
program. For example, when program A transfers control to program B by
using the TIPXCTL function, program A puts the data into its own CDA
(Continuity Data Area). The TIP system copies A‘s CDA to B‘s CDA.
Thus, when program B begins execution, its CDA will contain a copy of
A‘s CDA.

In addition to the above mentioned functions, TIP also provides two
record-passing techniques that also allow programs to exchange data.
These two functions are TIPPEER and TIPQUEUE. Both of these
functions allow one transaction program to send records to another.
Unlike the PCS functions, these functions are record oriented and do not
involve the transfer of control to another program.

TIPPEER
provides a real-time link between two transaction
programs. The programs may execute within the same TIP
system, or execute on different TIP systems that may be
on different computer systems. You use the TIPPEER
interface the same way you use the TIPFCS interface.
Your program OPENs the TIPPEER connection, issues a
series of GETs and PUTs to it, and then CLOSEs the
connection when it has finished. Your program would use
TIPPEER if it needs to exchange information in a real-time
or immediate fashion.

TIP Programming Reference

10 Proprietary IP-622

However, it may not be possible to establish a connection.
For example, the other computer may not be running, the
other TIP system may not be up, or the network connection
may not be available, etc. The initiating program should
take appropriate action in situations when it cannot get a
connection. Establishing a TIPPEER connection to another
program, is similar to making a phone call.

TIPQUEUE
provides a store-and-forward capability, which allows
transaction programs to reliably deliver records to other
transaction programs. You control the TIPQUEUE interface
much like the TIPFCS file interface. That is, a program
OPENs a TIPQUEUE file, issues a series of GETs or PUTs
to it, and CLOSEs the queue when it has finished.
Whereas TIPPEER is a bi-directional (conversational)
function, TIPQUEUE is a unidirectional function. That is, a
transaction program can write records to a TIP queue, or
read records from it, but cannot do both with the same TIP
queue. Programs that write to a TIP queue are client
transactions. Programs that read from the TIP queue are
server transactions.

TIPQUEUE is transaction oriented. If a program writes to a TIP queue,
then issues a commit request, it secures the data in the TIP queue.
Likewise, if a program writes to a TIP queue, then subsequently issues a
rollback request, all records written to the TIP queue since the last
commit point are backed out.

Finally, if TIPPEER is like talking on the telephone, then TIPQUEUE is
like leaving a message on a telephone answering computer. The
important thing is that the message is heard eventually.

The TIP WHOSON Utility

The TIP utility program WHOSON displays the execution stack level of a
program. The ability to stack or nest program execution is illustrated by
the following hierarchy of programs:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 11

In this example, PROG-A offers a choice of "performing" function B or C.
Instead of transferring control (permanently) to either of those programs,
PROG-A performs a TIPSUB operation that "performs" (in a sense similar
to the COBOL PERFORM verb) the transaction B or C. When B or C
terminates, control returns to PROG-A immediately following the call to
TIPSUB.

PROG-A must ensure that PROG-B or PROG-C (or PROG-D, PROG-E
or PROG-F) does not destroy any necessary information in the CDA,
although, generally, the CDA is only used for passing information to such
subordinate programs and all of the programs involved agree on the
layout of the CDA area.

The advantage of this scheme is that PROG-B does not know how it was
invoked. PROG-B performs its function and issues a call to TIPRTN. The
TIP system determines the return point.

This example must not be interpreted to mean that TIPSUB is preferable
to TIPXCTL. The programmer must choose between the two classic
techniques to transfer control:
 GO TO (TIPXCTL or TIPDXC) or PERFORM (TIPSUB).

Issuing a call to TIPSUB involves TIP system overhead - this overhead is
somewhat more than that required for TIPXCTL or TIPDXC.

Coding Suggestions

 Avoid partitioning an application system into modules that are too
small. A reasonable rule of thumb is to place code that is related by
use in one transaction program. For example, use TIPSUB to
"PERFORM" infrequently used functions that are not worth
permanently imbedding in the load module.

 Avoid writing programs that are either excessively fragmented or are
monolithic monsters.

TIP Programming Reference

12 Proprietary IP-622

 Avoid using a transfer of control to execute a relatively minor task.

 A particularly poor idea is designing a system that uses TIPSUB to
"perform" a routine that issues file I/O. In this case, the relatively high
overhead involved in a TIPSUB call (which almost always causes the
TIP system to perform input/output operations) is incurred just to
perform I/O for the application program. It is more efficient to perform
the I/O directly inline.

Fixed Order Parameter Passing

TIP passes five parameters to a transaction program, in the following
fixed order:

1. PIB Process Information Block

2. CDA Continuity Data Area order:

3. MCS Message Control System work area

4. WRK Work area

5. GDA Global Data Area

Each of these areas represents main storage, established by TIP, that the
transaction program may use.

Example:

DATA DIVISION.

LINKAGE SECTION.

01 PIB. COPY TC-PIB.

01 MCS. COPY TC-MCS.

01 WORK-AREA.

. . .

01 CDA. COPY TC-CDA.

01 GDA.

. . .

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA

 GDA

The order of appearance of the "01" levels in the LINKAGE SECTION is
not important, but the order of the areas specified in the PROCEDURE
DIVISION USING statement is critical, and fixed.

The names of the "01" level items are not important (although the names
illustrated in the example above have become somewhat of a tradition).
What is very crucial, however, is the rule that each name in the USING
list must refer to a corresponding named "01" level in the LINKAGE
section.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 13

Linkage Items

The PIB and the CDA must be present and are required. The MCS,
WORK-AREA and GDA are optional areas. If an individual program does
not use one or more of these areas, using a "dummy" linkage item to
maintain the correct USING list order is recommended.

COBOL does not permit the programmer to omit items from the USING
clause with one exception: trailing items may be omitted. If a program
does not intend to reference the Global Data Area (for example) the fifth
parameter may be omitted.

PIB - Process Information Block

The Process Information Block (PIB) is a fixed size and fixed format area
that contains information about the transaction that is executing. TIP
establishes a PIB area for each execution of a transaction program. Most
of the fields in the PIB are read-only in the sense that the transaction
program is never required to alter the field. A few fields, however, are
occasionally modified by the transaction program as a preliminary step to
calling a TIP subroutine.

TC-PIB Copy Book

The layout of the PIB is contained in the supplied COBOL copy book "TC-
PIB":

 * TIP - PROCESS INFORMATION BLOCK *

05 PIB-TRID PICTURE X(8).

05 PIB-UID PICTURE X(8).

05 PIB-TID PICTURE X(4).

05 PIB-STATUS PICTURE X(1).

 88 PIB-GOOD VALUE " ".

 88 PIB-PROG-ABEND VALUE "A".

 88 PIB-BREAK VALUE "B".

 88 PIB-DUP-AFT-NAME VALUE "C".

 88 PIB-DUP-KEY VALUE "D".

 88 PIB-EOF VALUE "E".

 88 PIB-IO-ERROR VALUE "F".

 88 PIB-FUNCTION VALUE "G".

 88 PIB-ACTIVE VALUE "H".

 88 PIB-SECURITY VALUE "K".

 88 PIB-LOCKED VALUE "L".

 88 PIB-MSG-AVAIL VALUE "M".

 88 PIB-NO-MEM VALUE "M".

 88 PIB-NOT-FOUND VALUE "N".

 88 PIB-OVERFLOW VALUE "O".

 88 PIB-MISSING-PARAMS VALUE "P".

 88 PIB-TIMED-OUT VALUE "T".

 88 PIB-WRONG-MODE VALUE "W".

 88 PIB-NOT-HELD VALUE "X".

 88 PIB-HELD VALUE "Y".

 88 PIB-FULL VALUE "Z".

05 PIB-SYSTEM PICTURE X(1).

TIP Programming Reference

14 Proprietary IP-622

 88 PIB-EOJ-PENDING VALUE "E".

05 PIB-GROUP-1 PICTURE X(8).

05 PIB-GROUP-2 PICTURE X(8).

05 PIB-DATE PICTURE 9(6) COMP-3.

05 PIB-TIME PICTURE 9(6) COMP-3.

05 PIB-JULIAN-DATE.

 10 PIB-YEAR PICTURE 9(3) COMP-4.

 10 PIB-DAY-OF-YEAR PICTURE 9(3) COMP-4.

05 PIB-SITE-NAME PICTURE X(12).

05 PIB-SECURITY-CODE PICTURE 9(3) COMP-4.

 88 PIB-TECH-USER VALUE 1.

 88 PIB-MASTER-USER VALUE 1 THRU 9.

 88 PIB-SYSTEM-USER VALUE 10 THRU 19.

 88 PIB-SYSTEM-OR-HIGHER VALUE 1 THRU 19.

 88 PIB-PROGRAMMER-USER VALUE 20 THRU 29.

 88 PIB-PROGRAMMER-OR-HIGHER VALUE 1 THRU 29.

 88 PIB-APPLICATION-USER VALUE 30 THRU 255.

 88 PIB-APPLICATION-OR-HIGHER VALUE 1 THRU 255.

05 PIB-ACCOUNT-NUMBER PICTURE X(4).

05 PIB-LAST-MCS-NAME PICTURE X(8).

05 PIB-LOCAP PICTURE X(8).

05 PIB-WAIT-TIME PICTURE S9(4) COMP-4.

05 PIB-DETAIL-STATUS PICTURE 9(4) COMP-4.

 88 PIB-DUPS-AHEAD VALUE 1.

 88 PIB-LOAD-MODULE-NOT-FOUND VALUE 56.

 88 PIB-LOAD-MODULE-SIZE-ZERO VALUE 57.

 88 PIB-LOAD-MODULE-TOO-LARGE VALUE 58.

 88 PIB-NO-FREEMEM-TO-LOAD-PROGRAM VALUE 59.

 88 PIB-NO-BACKGROUND-TABLES VALUE 60.

 88 PIB-ERROR-DURING-PROGRAM-LOAD VALUE 61.

 88 PIB-NOT-FOUND-IN-TIP-CAT VALUE 62.

 88 PIB-NOT-ALLOWED-BACKGROUND VALUE 63.

 88 PIB-TERM-LOCAP-NAME-INVALID VALUE 64.

05 PIB-LOCK-INDICATOR PICTURE X(1).

 88 PIB-ROLLBACK VALUE "O".

 88 PIB-RELEASE VALUE "R".

 88 PIB-HOLD VALUE "H".

 88 PIB-COMMIT VALUE " ".

05 PIB-RPG-UPSI PICTURE X(1).

05 PIB-ALT-MCS-ROW PICTURE 9(3) COMP-4.

05 PIB-CDA-I PICTURE 9(8) COMP-4.

05 PIB-WRK-I PICTURE 9(8) COMP-4.

05 PIB-LEVEL PICTURE 9(3) COMP-4.

05 PIB-TERM-TYPE PICTURE 9(4) COMP-4.

 88 PIB-UTS-20 VALUE 2.

 88 PIB-UTS-40 VALUE 4.

 88 PIB-UTS-60 VALUE 6.

 88 PIB-TELETYPE VALUE 11.

 88 PIB-OFIS-PC VALUE 13.

 88 PIB-TIPFE VALUE 20.

 88 PIB-TIPWEB VALUE 30.

 88 PIB-TIPWEBSERVICE VALUE 32.

05 PIB-MIRAM-REL-REC-NUM PICTURE 9(9) COMP-4.

05 PIB-CDA-SIZE PICTURE 9(8) COMP-4.

05 PIB-MCS-SIZE PICTURE 9(8) COMP-4.

05 PIB-WRK-SIZE PICTURE 9(8) COMP-4.

05 PIB-CDA-LENGTH PICTURE 9(8) COMP-4.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 15

05 PIB-LANGUAGE PICTURE X(1).

05 PIB-WDEL-INDICATOR PICTURE X(1).

 88 PIB-WAIT-DELIVERY VALUE "Y".

 88 PIB-NO-WAIT-DELIVERY VALUE "N".

05 PIB-ALT-MCS-COL PICTURE 9(3) COMP-4.

05 PIB-MAX-MCS-ROW PICTURE 9(3) COMP-4.

05 PIB-MAX-MCS-COL PICTURE 9(3) COMP-4.

05 PIB-MCS-FIELD PICTURE 9(4) COMP-4.

05 PIB-MCS-OVERLAY PICTURE 9(3) COMP-4.

05 PIB-MCS-KEY PICTURE X.

 88 PIB-XMIT VALUE " ".

 88 PIB-MSG-WAIT VALUE "0".

 88 PIB-FKEY1 VALUE "1".

 88 PIB-FKEY2 VALUE "2".

 88 PIB-FKEY3 VALUE "3".

 88 PIB-FKEY4 VALUE "4".

 88 PIB-FKEY5 VALUE "5".

 88 PIB-FKEY6 VALUE "6".

 88 PIB-FKEY7 VALUE "7".

 88 PIB-FKEY8 VALUE "8".

 88 PIB-FKEY9 VALUE "9".

 88 PIB-FKEY10 VALUE "A".

 88 PIB-FKEY11 VALUE "B".

 88 PIB-FKEY12 VALUE "C".

 88 PIB-FKEY13 VALUE "D".

 88 PIB-FKEY14 VALUE "E".

 88 PIB-FKEY15 VALUE "F".

 88 PIB-FKEY16 VALUE "G".

 88 PIB-FKEY17 VALUE "H".

 88 PIB-FKEY18 VALUE "I".

 88 PIB-FKEY19 VALUE "J".

 88 PIB-FKEY20 VALUE "K".

 88 PIB-FKEY21 VALUE "L".

 88 PIB-FKEY22 VALUE "M".

 88 PIB-F-REBUILD VALUE "1" "5" "N".

 88 PIB-F-NEXT VALUE "2" "6".

 88 PIB-F-UPDATE VALUE "4" "8".

 88 PIB-F-FIELD VALUE "<".

 88 PIB-F-MENU VALUE ">".

05 PIB-TEST-MODE-INDICATOR PICTURE X.

 88 PIB-TEST-MODE-ON VALUE "Y".

 88 PIB-TEST-MODE-OFF VALUE "N".

05 PIB-HOST-NAME PICTURE X(12).

05 PIB-TERM-NAME PICTURE X(8).

05 PIB-CUR-MCS-ROW PICTURE 9(3) COMP-4.

05 PIB-CUR-MCS-COL PICTURE 9(3) COMP-4.

05 PIB-SYSTEM-TYPE PICTURE X.

 88 PIB-TIP30 VALUE "U".

 88 PIB-TIPIX VALUE "X".

05 PIB-K-INTERFACE PICTURE X(17).

05 PIB-TYPE PICTURE X.

 88 PIB-TYPE-PEER VALUE "P".

 88 PIB-TYPE-QUEUE VALUE "Q".

 88 PIB-TYPE-SUB VALUE "S".

 88 PIB-TYPE-SUBP VALUE "R".

 88 PIB-TYPE-FORK VALUE "F".

 88 PIB-TYPE-MSG VALUE "M".

TIP Programming Reference

16 Proprietary IP-622

 88 PIB-TYPE-TIP VALUE "T".

 88 PIB-TYPE-WEBSERVICE VALUE "W".

05 PIB-CENTURY PICTURE 99.

05 FILLER PICTURE X.

05 PIB-FCS-WAIT-TIME PICTURE S9(4) COMP-4.

 * Long Date format YYYYMMDD

 05 PIB-LONG-DATE PICTURE 9(8).

 05 FILLER REDEFINES PIB-LONG-DATE.

 10 PIB-L-YEAR PICTURE 9(4).

 10 FILLER REDEFINES PIB-L-YEAR.

 15 PIB-L-CENTURY PICTURE 9(2).

 15 PIB-L-YY PICTURE 9(2).

 10 PIB-L-MM PICTURE 9(2).

 10 PIB-L-DD PICTURE 9(2).

 05 PIB-IN-LOCAP PICTURE X(8).

 05 PIB-DBI-STS PICTURE 9(5).

 05 PIB-ODBC-STS PICTURE X(5).

 05 FILLER PICTURE X(16).

 * Last 4 bytes holds '$PiB' for overrun detection

 05 FILLER PICTURE X(04).

* Keep FILLER so the whole PIB is 232 bytes.

The following is a description of the fields that make up the PIB.:

PIB-TRID
This eight byte field contains the name of the transaction
that is currently executing. The program may interrogate
this field to determine the transaction name by which the
program was called. Certain TIP subroutine calls (for
example: TIPSUB) require the program to move
information into this field. The field is reset to the original
value after a call to a TIP subroutine that required
modification of this field (example: TIPSUB, TIPSUBP).

PIB-UID
This eight byte field contains one of the following values:

user id
The user id of the user that is executing the
program.

BACK$nnn
The executing program is running as a background
process. "nnn" is 3 digits representing the assigned
background process number.

 PIB-TID
This four byte field is set to the name of the executing
terminal. The program may interrogate this field to
determine the name of the terminal running the program.

 For background processes, this field contains the terminal
name of the originating process (the parent process).

 The value inserted here by TIP is often the last four
characters of the user's terminal identifier (for example, the

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 17

terminal may be /dev/ttyx18, in which case the PIB-TID
field will contain "YX18". This is based on the assumption
that the last four characters are more likely to be unique

 The environment variable TIPTERM may be set to a
particular terminal name if the user wishes to force a
specific value.

PIB-STATUS
This one byte field contains the status returned as a result
of a call to a TIP subroutine. A number of 88 level items
are defined in the copy book for your convenience.

 It is strongly recommended that programs interrogate this
status field after a call to a TIP subroutine. Subroutine calls
that work one day may fail miserably the next due to
unforeseen external influences.

 The TIP Message Control System (MCS) also uses an
additional status field in the MCS area (MCS-STATUS).
The documentation of the various calls to MCS describes
the status that may be set for each of those calls.

 A value of PIB-GOOD indicates a successful call to the
subroutine as far as TIP is concerned. Any other value
may be an error - although it may be only a warning.

 PIB-SYSTEM
This one-byte field is set to the value "PIB-EOJ-PENDING"
if and only if TIP has been given the shutdown command
"EOJ".

 This mechanism allows TIP native mode programs to
detect EOJ requests. When a program detects this
condition, it is good practice to terminate the program as
soon as possible to expedite system shutdown procedures.

 At the very least, the program should attempt to inform the
terminal operator that system shutdown has been
requested.

PIB-GROUP-1
This field contains the name of the first elective group to
which the user belongs.

 If the user is not a member of a user group, this field
contains spaces

PIB-GROUP-2
This field contains the name of the second elective group
to which the user belongs.

 If the user is not a member of a user group, this field
contains spaces.

TIP Programming Reference

18 Proprietary IP-622

 The TIP system permits up to 16 elective groups for each
user. Only the first two elective group names are available
in the PIB. The names of all elective groups can be
obtained by using the subroutine call TIPGRPS.

PIB-DATE
This field contains the current date (in YYMMDD format -
year, month, day sequence).

PIB-TIME
This field contains the current time of day (in HHMMSS
format - hour, minute, second sequence).

Note: Due to the way TIP operates internally, this field
may not be accurate. The best resolution is
approximately 1 second (this field is updated by TIP
as a side effect of calling some of the TIP routines;
between calls to TIP service routines, the contents
of this field will not change). Programs that require
an accurate time of day (for example to time stamp
records or to generate a unique value) should
obtain the current time from the operating system;
COBOL provides the ACCEPT verb for this
purpose.

PIB-JULIAN-DATE
This group item contains the current date in the Julian
format (day of the year, example: 88 109).

PIB-SITE-NAME
This field contains the site name as retrieved from the Unix
uname system call.

PIB-SECURITY-CODE
This field contains the security level of the user running the
program.

 The security level is represented by a number between 1
and 255 (inclusive).

 In the TC-PIB copy book, various popular values are
indicated by 88 level items for this field.

PIB-ACCOUNT-NUMBER
This field contains the account code specified when the
user logged on TIP.

PIB-LAST-MCS-NAME
This field contains the name of the last TIP screen format
used at this terminal.

 If the last message output to the terminal was not issued
via the TIP Message Control System (MCS) this field
contains low-values.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 19

PIB-LOCAP
This field contains the network name of the computer
where the program is running.

PIB-WAIT-TIME
This field may be set by a program before soliciting
terminal input (via calls to TIPMSGI, PROMPT, or
TIPTERM). The system waits for an input message for only
the specified wait-time (expressed in seconds).

 If an input message does not arrive within the expected
time interval the PIB-STATUS for the corresponding input
request (TIPMSGI, PROMPT, etc.) is set to PIB-TIMED-
OUT.

 This field is reset to zero after each input message.

 If this field is set to a value greater than zero, the system
waits for the specified number of seconds for an input
message.

 If this field is set to a negative value (the sign is important -
not the magnitude of the number), the system waits for the
amount of time defined by the TIP definition parameter
TIMEOUT= in the tipix.conf file.

 If this field contains a zero, the system will not impose a
time limit on the arrival of the next input message.

PIB-DETAIL-STATUS
Some TIP subroutines set this field to provide additional
information about the status after a call to the subroutine.

 The value denoted by the 88-level item "PIB-DUPS-
AHEAD" is set by TIPFCS after a record read request
(FCS-GET, FCS-GETUP, FCS-NEXT) if there are records
with a duplicate key following the record that was read.

Note: MBP ISAM does not provide DUPS AHEAD status
information, so it cannot be passed to the
application.

PIB-LOCK-INDICATOR
A program sets this field whenever transaction end occurs
to indicate to the system the type of record lock handling
desired. See the discussion in Transaction End on page
26.

 TIP examines this field whenever the program calls
TIPRTN, TIPSUB, TIPDXC, TIPFORK, and TIPXCTL. Or
calls TIPFCS with a function code of FCS-TREN or solicits
terminal input (by calling TIPMSGI, PROMPT, etc.), or
calls FCS-CLOSE for a recoverable file. If this field is set
to:

TIP Programming Reference

20 Proprietary IP-622

Space
The default value. All record locks are released and
a TREN (transaction end) record is written to the
TIPIX.QBL file.

PIB-ROLLBACK (O)
All updates that were made to files that were
defined as "hold for transaction (HOLD=TR)" are
rolled back and a TREN (transaction end) record is
written to the TIPIX.QBL file.

PIB-RELEASE (R)
All records that are held (via FCS-GETUP) and
have not been updated by a corresponding PUT
are released. Record locks acquired by updating or
adding records are retained.

PIB-HOLD (H)
All record locks are maintained and transaction end
is not recognized at this time.

Example:
PROGRAM-A holds a record, moves an "H" to this
field, and TIPSUBs to PROGRAM-B. The
transaction end that normally would take place
when TIPSUB is called is suppressed -
PROGRAM-B will find that the record is still held for
update.

 This field is reset to a space only after it is examined by
TIP. The recommended technique is to move the
appropriate value to this field before calling a TIP
subroutine.

PIB-RPG-UPSI
User programs may use this field to communicate one byte
of information from one program stack level to the next
level. This field is cleared to low values when a transaction
begins. Thereafter, the program(s) control the contents of
this field.

 The field is named "RPG-UPSI" because TIP RPG
programs often use this field.

 A program could move a particular value to this field to
signal some sort of action to the next program that is
called.

PIB-ALT-MCS-ROW
Place a row number (between 1 and 24 inclusive) in this
field to override the starting row number for screen formats
that are used by the program.

 This field is cleared to zero when the transaction begins;
thereafter, TIP does not modify this field.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 21

 Row numbers placed in this field override the starting row
number for screen formats that are subsequently used by
the transaction.

 May be altered by the application program and define the
upper left hand corner of an MCS window.

PIB-CDA-I
CDA area size increment. This field may be set to a value
between 0 and 32,767 (inclusive) before transferring
control to another program.

 The CDA of the called program is increased in size by the
specified number of bytes. The increase represents an
amount in addition to the CDA= size specified in the called
program's definition record.

PIB-WRK-I
WORK-AREA size increment. This field may be set to a
value between 0 and 32,767 (inclusive) before transferring
control to another program.

 The WORK-AREA of the called program is increased in
size by the specified number of bytes. The increase
represents an amount in addition to the WORK= size
specified in the called program's definition record.

PIB-LEVEL
This field contains the current program execution stack
level. See the description of the program stack in the
previous section – ―Program Execution Stack‖ on page 8.

 This value is the same value that is reported by the
WHOSON utility program under the heading "Lvl".

PIB-TERM-TYPE
This field is set by the TIP system to identify the type of
terminal that is associated with the executing program. A
number of COBOL 88-level items are supplied for various
terminal types.

PIB-MIRAM-REL-REC-NUM
When the TIP File Control System reads a record from a
MIRAM file, this binary full-word is set to the relative record
number of that record. The TIPFCS function FCS-GETRN
can be used to read an indexed MIRAM file via a specified
relative record number. See the description of FCS-
GETRN in the documentation for accessing Indexed Files

PIB-CDA-SIZE
The TIP system sets this field to the size of the program's
CDA (Continuity Data Area). This value represents the
number of bytes in the CDA

TIP Programming Reference

22 Proprietary IP-622

PIB-MCS-SIZE
This field is set by the TIP system to the size of the
program's MCS (Message Control System Area). This
value represents the number of bytes in the MCS area.

PIB-CDA-LENGTH
This field may be set by a program to control the number of
bytes of data in the CDA that are to be passed to or
received from another program. If the program places a
value in this field that is greater than the size of the
program's CDA, the value is reduced to the size of the
CDA.

 A program which is transferring control may place a count
in this field to specify the maximum number of bytes to be
transferred to the called program and to limit the amount of
data that may be returned in the CDA when control returns
to this program.

 Data is copied from the calling program CDA to the called
program CDA for a length, which is computed as the least
of the values in the PIB-CDA-LENGTH field in the PIB for
both programs.

 Upon entry to a program, this field contains the same value
as the field PIB-CDA-SIZE.

PIB-LANGUAGE
This field is set to a one character code, which is the
assigned language code for the user. The language code
is specified in the TIP definition USER record for the user
id.

PIB-ALT-MCS-CO
Defines the column to which a screen format is to be
displayed.

 May be altered by the application program and define the
upper left hand corner of an MCS window.

PIB-MAX-MCS-ROW
May be read by the application program and define the
bottom right hand corner of an MCS window

PIB-MAX-MCS-COL
May be read by the application program and define the
bottom right hand corner of an MCS window.

PIB-MCS-FIELD
Returns the relative field number in which the cursor was
on the most recent transmit and/or function key.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 23

PIB-MCS-OVERLAY
Holds the current MCS overlay number. A value of ZERO
indicates that nothing is overlaid.

CDA - Continuity Data Area

The Continuity Data Area (CDA) is an area of storage that TIP provides
for transaction programs. It is the only area that is copied to and from
programs during inter-program linkage - hence the name "continuity". The
programmer determines the size and format of this area.

The TIP definition entry for the transaction contains the size (in bytes) of
the area.

If a program transfers control to another program, the program initiating
the transfer of control can specify the number of bytes in the CDA that are
to be transferred to the called program's CDA.

The actual size of the CDA is not limited (other than by the obvious
constraint of available memory). All transactions are automatically
assigned a minimum CDA area of 256 bytes.

If a transaction program is called from the TIP command line and the
transaction is defined with CML=YES, the TIP Command Line Processor
will place data from the command line into the program's CDA.

TC-CDA copybook

The COBOL copybook TC-CDA defines the format for this particular use
of the CDA:

 * TIP - COMMAND LINE FORMAT OF CDA *

05 CDA-PARAMETERS.

 10 CDA-PARAM OCCURS 8 TIMES PICTURE X(8).

05 CDA-PARAMETERS-9 REDEFINES CDA-PARAMETERS.

 10 CDA-PARAM-9 OCCURS 8 TIMES PICTURE 9(8).

05 CDA-OPTIONS.

 10 CDA-OPTION OCCURS 8 TIMES PICTURE X.

05 CDA-OPTIONS-9 REDEFINES CDA-OPTIONS.

 10 CDA-OPTION-9 OCCURS 8 TIMES PICTURE 9.

05 CDA-TEXT PICTURE X(80).

The following is a description of the command line fields that make up the
CDA of a TIP program:

CDA-PARAMETERS
Up to eight positional command line parameters are
parameterized into these fields. Strictly numeric
parameters (parameters consisting of only digits "0"
through "9") are right justified and leading zero filled. Non-
numeric parameters are left justified and trailing space
filled.

TIP Programming Reference

24 Proprietary IP-622

 Alphabetic characters in this field are forced to uppercase
by the TIP command line processor (TCP).

CDA-OPTIONS
This field contains the command line option information.
Options immediately follow the transaction name and are
concatenated with the transaction name by a comma or a
slash.

 If no options are supplied, this field contains spaces.
 Alphabetic characters in this field are forced to uppercase
by TIP.

CDA-TEXT
This field contains the command line parameters (not the
transaction name or options!) in exactly the format they
were entered.

 TIP forces alphabetic characters in the CDA-TEXT area to
uppercase.

Additional Considerations:

If the program was not called from the TIP command line, the layout and
contents of the CDA are entirely at the discretion of the calling program.

MCS - MCS Area

The Message Control System Area (MCS) is an optional area that TIP
reserves for the transaction program. The transaction program normally
uses this area as a screen format I/O area although it may be used as a
work area for any purpose. The size of this area (in bytes) must be
correctly specified in the TIP definition for the transaction.

The MCS area is initially set to low values (X'00') by TIP.

TC-MCS copybook

The COBOL copybook TC-MCS defines the layout of the MCS packet
prefix that is required to interface with the Message Control System.

The fields in the MCS packet prefix are described in a separate section of
this document describing the Message Control System (MCS).

Work-Area

The WORK-AREA is an optional area that TIP reserves for the
transaction program. The size and layout of the work area is entirely at
the discretion of the programmer. Specify the size of the work area in the
TIP definition entry for the transaction program.

The normal practice is for the programmer to simply define any work
fields or areas that are needed by the program in this LINKAGE section
item.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 25

The COBOL compiler displays a DATA DIVISION MAP, which provides
information about all of the fields defined in the program's DATA
DIVISION. On the line where the "01" level item is defined, there appears
a length (as a number of bytes).

TIP programs use the work area as an area containing fields that are
modified during execution. The work area is the proper place for the
various record areas for files that are manipulated online.

TIP sets the work area to low values (all X'00') before the transaction
program is entered.

GDA - Global Data Area

The Global Data Area (GDA) is an optional area that may be configured
when TIP is defined (for more information, see the -G parameter for utility
TIPINSTALL in ARP-617, TIP Utilities).

If the GDA is defined in the TIP system, it is an area of fixed (specified)
size that can be accessed by all TIP programs that have access
permission. (You use the smprog utility to give a program permission to
access the GDA.)

The first full-word of the GDA is set to the length of the GDA in bytes. The
remainder of the GDA is cleared to low values (X'00') when the TIP
system starts.

Common Storage

One possible use of the GDA is to store a common table that is
referenced by many online programs. Instead of having each program
explicitly read the table into the program's work area, the GDA can be
initialized once with the desired data. Thereafter, all programs refer to the
table contained in the GDA.

GDA as Serial Resource

The GDA is a serial resource! Modification of this area might involve race
conditions. Some convention must be established and followed by
programs which intend to update the GDA.

Some techniques that may be used to queue access to the GDA are:

 use of the TIPFLAG subroutine

 locking a record (via a call to TIPFCS using FCS-GETUP) that is
designated as a control record for this purpose

TIP installations, that make use of the Global Data Area should consider
creating a local copybook that user-written programs can use to define
the layout of the GDA

TIP Programming Reference

26 Proprietary IP-622

Transaction End

When do Transactions Begin and End

Transaction Initiation

In TIP terms a transaction normally begins with the initiation of a program.
Since a number of activities take place at transaction end, it is important
to establish the conditions that cause TIP to consider that the transaction
has terminated.

TIP Transaction Termination

Transaction termination occurs as a result of one of the following events:

6. TIP or the hardware aborts.

7. The transaction program ABORTS and does not contain specific
coding to trap such errors.

8. The transaction program calls TIPFCS (the TIP File Control System)
with a function code of: FCS-TREN or FCS-CLOSE. However, FCS-
CLOSE for edit buffers, library files, dynamic files, and TIPPRINT
does not cause transaction termination – as they are non-recoverable
files.

9. The transaction program calls TIPRTN (end of program).

10. The transaction program calls TIPSUB, TIPXCTL, TIPDXC or
TIPFORK (various transfers of control).

11. The transaction program solicits terminal input (via TIPMSGI,
PROMPT, TIPTERM, etc.) without previously specifying that record
locks are to be maintained across terminal input.

12. The transaction program calls TIPPEER with a function code of FCS-
CLOSE.

In cases (1) and (2), the system always rolls back any updates since the
last commit point (transaction end) for files that were defined with Record
Hold set to T (transaction) and releases any outstanding record locks for
the transaction.

In cases (3) through (7) the action of the system at transaction end
depends on the setting of the PIB-LOCK-INDICATOR (described in the
section "PIB-LOCK-INDICATOR ACTION").

The following table summarizes calls that can result in a transaction end.

CALL CALL Type

TIPFCS

FCS-TREN for transaction end, or
FCS-CLOSE for file closing. (However,
FCS-CLOSE for edit buffers, library files,
dynamic files, and TIPPRINT does not
cause transaction end.)

TIPRTN Program termination

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 27

CALL CALL Type

TIPDXC
TIPFORK
TIPFORKW
TIPSUB
TIPSUBP
TIPXCTL

Transfer of Control

PROMPT
PROMPTX
PROMPTX8
TEXT
TEXT80
TIPASK
TIPASKYN
TIPLIST
TIPMSGI
TIPMSGRV
TIPTERM (T-GET)

Terminal Input

PARAM Potential Terminal Input

In general, transaction end causes the release of record locks and the
writing of a "TREN" (mark transaction end) record to the TIP QBL file, if
records were updated in a file that is defined as HOLD=TR.

Deferring Transaction End

A program may defer transaction end and link to another program to
continue processing (see the description of the PIB field PIB-LOCK-
INDICATOR).

Explicit Transaction End

A program may choose to signal an explicit transaction end to occur in
those cases where the program must ensure that all updates made thus
far are committed. See the description of the call to TIPFCS with the
FCS-TREN function.

PIB-LOCK-INDICATOR Action

The following table summarizes the action of the TIP system when it
examines the PIB-LOCK-INDICATOR field:

PIB-LOCK-
 INDICATOR

Transaction
End?

GETUP
LOCKS

UPDATE
LOCKS

ROLLBACK
UPDATES?

space / X'00' Yes Released Released No

O (roll back) Yes Released Released Yes

TIP Programming Reference

28 Proprietary IP-622

PIB-LOCK-
 INDICATOR

Transaction
End?

GETUP
LOCKS

UPDATE
LOCKS

ROLLBACK
UPDATES?

R (release) No Released Kept No

H (hold) No Kept Kept No

Event Action Taken

TRANSACTION
END

Marks a new commit point. File updates are either
committed or rolled back to the previous commit
point.

GETUP LOCK
A record lock that is currently imposed because
the program has issued a GETUP on a record but
has not yet updated the record.

UPDATE LOCK

A record lock that is currently imposed because
the record has been updated by the program and
the record is still held if the file is defined with
Record Hold set to T (transaction).

ROLLBACK
UPDATES

Reverse any file updates since the last commit
point (Transaction End) using information in the
QBL (quick before look) file(s).

PCS Subroutines

PCS subroutine CALLs are summarized here to provide an overview of
the type of facilities that are available through the PCS. The individual
subroutines are described in detail in subsequent sections.

 Subroutine Description

BATPEER
Have a peer-to-peer conversation with a
transaction (from batch).

BATQUEUE
Send a record to a server transaction (from
batch).

TIPBITS
Convert a series of 32 bytes to 32 bits.
 The TIPBITS subroutine enables COBOL
programs to manipulate bit values.

TIPBYTES
Convert a series of 32 bits to 32 bytes.
 The TIPBYTES subroutine enables COBOL
language programs to manipulate bit values.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 29

 Subroutine Description

TIPDATE

Return date in readable format (example:
TUESDAY OCTOBER 18 1988).
 The TIPDATE subroutine returns the date in
expanded format (including day of the week).

TIPDUMP
Cause deliberate dump of transaction linkage
areas. After the dump, the transaction
terminates.

TIPDXC

Transfer control to another transaction
program after the arrival of an input message
from the terminal. TIPDXC enables a program
to transfer control to another program after
XMIT or a function key is pressed.

TIPFLAG

Provide capability to test and/or set up to 32
"flag" bits (switches). The TIPFLAG
subroutine enables transaction programs to
manipulate internal TIP flag bits and use
these flags as semaphores to implement
queuing schemes.

TIPFORK.

Start a transaction program running as an
asynchronous process. TIPFORK enables a
program to initiate another program as an
asynchronous task, thus creating an
independently executing process.
 The independent process runs either: 1) with
a terminal, or 2) as a "background" process
(without a connected terminal).

TIPFORKW

Open a new sub-window under TIP/fe and
start the transaction program running as an
asynchronous process in the new sub-
window.

TIPGRPS

Retrieve elective group membership. The
TIPGRPS subroutine retrieves the names of
the application groups to which the user has
membership.

TIPGRPST
Set elective group membership. The
TIPGRPST subroutine sets the names of the
application groups to which the user belongs.

TIPMSG
Retrieve pre-processed error messages from
the TIP error message file.

TIPPEER
Have a peer-to-peer conversation with
another transaction (like a phone call).

TIP Programming Reference

30 Proprietary IP-622

 Subroutine Description

TIPQUEUE
Send a record to a server transaction (like
leaving a message on a telephone answering
computer).

TIPRTN

Terminate transaction program and return
control to calling program. All TIP programs
use TIPRTN to terminate and return control to
the calling program.

TIPSNAP

"Snap" dump selected portions of program's
memory.
 The TIPSNAP subroutine is used to generate
memory-image "snap" dumps of selective
portions of a transaction program's memory
areas. This subroutine is primarily used for
debugging.

TIPSUB

Invoke a transaction program as a sub-
function. TIPSUB allows a program to
"PERFORM" another program and receive
control when that program is finished.

TIPSUBP Call a subprogram.

TIPTIMER
Delay program execution for a specified
number of seconds.

TIPUSR
Retrieve terminal name where a specified
user is using TIP system.

TIPUSRID Retrieve information about TIP user.

TIPWINAP From TIP/fe, start up a Windows application.

TIPXCTL
"GOTO" another program. Using TIPXCTL, a
program can "GO TO" another program
without any return of control.

BATPEER - Peer-to-Peer from Batch

BATPEER has not been implemented in TIP Studio. For the functionality
found with BATPEER please use the TipAsActiveDTP control to establish
PEER sessions with an application server from an external process.

BATPEER is like TIPPEER but it is invoked by a batch client program. It
implements synchronous two-way communication between a batch
program and a TIP transaction program. The transaction may be
executing on the same or a different TIP system.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 31

A batch client program uses BATPEER for peer-to-peer communication.
(Just as an on-line client transaction would use TIPPEER.)

A server transaction always uses TIPPEER for peer-to-peer
communication. You code the server transaction exactly the same way
as you would with TIPPEER. In fact, you can call the same server
transaction from a batch program or an on-line transaction.

For a discussion of peer-to-peer processing, see TIPPEER.

BATQUEUE - Queuing from Batch

BATQUEUE has not been implemented in TIP Studio.

BATQUEUE is like TIPQUEUE but it is invoked by a batch program. It
implements queuing between a batch program and a TIP transaction
program. The transaction may be executing on the same or a different
TIP system.

A batch program uses BATQUEUE for queuing. (Just as an on-line
transaction would use TIPQUEUE.)

For a discussion of queuing, see TIPQUEUE.

TIPBITS - Convert Bytes to Bits

This subroutine is supplied as a utility for COBOL language programmers
that need to manipulate bits. TIPBITS converts a string of 32 bytes (each
containing a value of 0 or 1) into a full-word (defined in COBOL as 9(9)
BINARY) with the corresponding bits in the full-word set to a zero or one
(X'F0' or X'F1').

The bits in the full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPBITS" USING bit-switches

 byte-switches

bit-switches
The receiving field defined as a binary full-word -
PIC 9(9) COMP SYNC.

byte-switches
The 32 bytes that are to be mapped into bits in the
receiving field. Each byte must contain a zero or one.

Example:

MOVE "11001100110011001100110011001100"

TIP Programming Reference

32 Proprietary IP-622

 TO BYTE-SWITCHES

CALL "TIPBITS" USING BIT-SWITCHES

 BYTE-SWITCHES

The field "BIT-SWITCHES" would contain:

Binary '11001100110011001100110011001100'

Hex 'CCCCCCCC'

TC-BITS

A supplied copy book named TC-BITS defines the two parameters in the
above syntax description. See the description of the TIPFLAG subroutine.

* Define 32 "Bit" Switches *

*

05 BIT-SWITCHES PICTURE 9(9) BINARY SYNC.

*

05 BYTE-SWITCHES.

 10 SWITCH-31 PICTURE 9.

 88 SWITCH-31-OFF VALUE 0.

 88 SWITCH-31-ON VALUE 1.

 10 SWITCH-30 PICTURE 9.

 88 SWITCH-30-OFF VALUE 0.

 88 SWITCH-30-ON VALUE 1.

 10 SWITCH-29 PICTURE 9.

 88 SWITCH-29-OFF VALUE 0.

 88 SWITCH-29-ON VALUE 1.

 10 SWITCH-28 PICTURE 9.

 88 SWITCH-28-OFF VALUE 0.

 88 SWITCH-28-ON VALUE 1.

 10 SWITCH-27 PICTURE 9.

 88 SWITCH-27-OFF VALUE 0.

 88 SWITCH-27-ON VALUE 1.

 10 SWITCH-26 PICTURE 9.

 88 SWITCH-26-OFF VALUE 0.

 88 SWITCH-26-ON VALUE 1.

 10 SWITCH-25 PICTURE 9.

 88 SWITCH-25-OFF VALUE 0.

 88 SWITCH-25-ON VALUE 1.

 10 SWITCH-24 PICTURE 9.

 88 SWITCH-24-OFF VALUE 0.

 88 SWITCH-24-ON VALUE 1.

 10 SWITCH-23 PICTURE 9.

 88 SWITCH-23-OFF VALUE 0.

 88 SWITCH-23-ON VALUE 1.

 10 SWITCH-22 PICTURE 9.

 88 SWITCH-22-OFF VALUE 0.

 88 SWITCH-22-ON VALUE 1.

 10 SWITCH-21 PICTURE 9.

 88 SWITCH-21-OFF VALUE 0.

 88 SWITCH-21-ON VALUE 1.

 10 SWITCH-20 PICTURE 9.

 88 SWITCH-20-OFF VALUE 0.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 33

 88 SWITCH-20-ON VALUE 1.

 10 SWITCH-19 PICTURE 9.

 88 SWITCH-19-OFF VALUE 0.

 88 SWITCH-19-ON VALUE 1.

 10 SWITCH-18 PICTURE 9.

 88 SWITCH-18-OFF VALUE 0.

 88 SWITCH-18-ON VALUE 1.

 10 SWITCH-17 PICTURE 9.

 88 SWITCH-17-OFF VALUE 0.

 88 SWITCH-17-ON VALUE 1.

 10 SWITCH-16 PICTURE 9.

 88 SWITCH-16-OFF VALUE 0.

 88 SWITCH-16-ON VALUE 1.

 10 SWITCH-15 PICTURE 9.

 88 SWITCH-15-OFF VALUE 0.

 88 SWITCH-15-ON VALUE 1.

 10 SWITCH-14 PICTURE 9.

 88 SWITCH-14-OFF VALUE 0.

 88 SWITCH-14-ON VALUE 1.

 10 SWITCH-13 PICTURE 9.

 88 SWITCH-13-OFF VALUE 0.

 88 SWITCH-13-ON VALUE 1.

 10 SWITCH-12 PICTURE 9.

 88 SWITCH-12-OFF VALUE 0.

 88 SWITCH-12-ON VALUE 1.

 10 SWITCH-11 PICTURE 9.

 88 SWITCH-11-OFF VALUE 0.

 88 SWITCH-11-ON VALUE 1.

 10 SWITCH-10 PICTURE 9.

 88 SWITCH-10-OFF VALUE 0.

 88 SWITCH-10-ON VALUE 1.

 10 SWITCH-09 PICTURE 9.

 88 SWITCH-09-OFF VALUE 0.

 88 SWITCH-09-ON VALUE 1.

 10 SWITCH-08 PICTURE 9.

 88 SWITCH-08-OFF VALUE 0.

 88 SWITCH-08-ON VALUE 1.

 10 SWITCH-07 PICTURE 9.

 88 SWITCH-07-OFF VALUE 0.

 88 SWITCH-07-ON VALUE 1.

 10 SWITCH-06 PICTURE 9.

 88 SWITCH-06-OFF VALUE 0.

 88 SWITCH-06-ON VALUE 1.

 10 SWITCH-05 PICTURE 9.

 88 SWITCH-05-OFF VALUE 0.

 88 SWITCH-05-ON VALUE 1.

 10 SWITCH-04 PICTURE 9.

 88 SWITCH-04-OFF VALUE 0.

 88 SWITCH-04-ON VALUE 1.

 10 SWITCH-03 PICTURE 9.

 88 SWITCH-03-OFF VALUE 0.

 88 SWITCH-03-ON VALUE 1.

 10 SWITCH-02 PICTURE 9.

 88 SWITCH-02-OFF VALUE 0.

 88 SWITCH-02-ON VALUE 1.

 10 SWITCH-01 PICTURE 9.

 88 SWITCH-01-OFF VALUE 0.

TIP Programming Reference

34 Proprietary IP-622

 88 SWITCH-01-ON VALUE 1.

 10 SWITCH-00 PICTURE 9.

 88 SWITCH-00-OFF VALUE 0.

 88 SWITCH-00-ON VALUE 1.

**

* TO COMPRESS BYTE-SWITCHES INTO BIT-SWITCHES FOR *

* TIPFLAG. *

* *

* CALL 'TIPBITS' USING BIT-SWITCHES, *

* BYTE-SWITCHES. *

* *

**

* TO EXPAND BIT-SWITCHES TO BYTE-SWITCHES FOR *

* PROGRAM USE. *

* *

* CALL 'TIPBYTES' USING BIT-SWITCHES, *

* BYTE-SWITCHES. *

* *

**

TIPBYTES - Convert Bits to Bytes

This subroutine is supplied as a utility for COBOL language programmers
that need to manipulate bits. TIPBYTES converts a full-word (defined in
COBOL as 9(9) BINARY) into a string of 32 bytes with each byte
containing a 0 or 1 (X'F0' or X'F1') depending on the value in the
corresponding bit in the full-word.

The bits in a full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPBYTES" USING bit-switches

 byte-switches

Where:

bit-switches
The full-word field (defined as PIC 9(9) BINARY) that
contains the bits t hat are to be converted into a byte
representation.

byte- switches
The resulting bytes that are set to a graphic zero or one
(X'F0' or X'F1') depending on the setting of the
corresponding bits in the field BIT-SWITCHES.

Example:

MOVE 118 TO BIT-SWITCHES.

CALL "TIPBYTES" USING BIT-SWITCHES

 BYTE-SWITCHES

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 35

The field "BYTE-SWITCHES" would then contain the following:

 PIC X(32) '00000000000000000000000001110110'

A supplied copy book named TC-BITS defines the two parameters in the
above syntax description. See the description of the this copy book on
page 32.

TIPDATE - Return Date

This routine returns the date in a readable format. An optional parameter
may be supplied to convert a date other than today's date.

Syntax:

CALL "TIPDATE" USING date-area

 [yymmdd]

Where:

date-area
A 30 character field that receives the date in descriptive
language. Example (English) result: "MONDAY APRIL 11
1988 "

yymmdd
Optional parameter allowing the calling program to supply
a specific date to be translated into readable format. This
field is assumed to be defined as PIC 9(6) with the date in
YYMMDD format (example: 891225).

Example:

05 TODAYS-DATE PIC X(30).

 CALL "TIPDATE" USING TODAYS-DATE

TIPDUMP - Force Program Dump

Call this subroutine to force a program dump at a specific point in the
processing. This method is simpler than the technique sometimes used
by COBOL programmers to force a deliberate program abort - adding
garbage to a packed field.

Syntax:

CALL "TIPDUMP"

There are no parameters.

TIP Programming Reference

36 Proprietary IP-622

All LINKAGE-SECTION areas, PIB, CDA, MCS and WORK are printed in
Hexadecimal and the program terminates.

The dump is contained in the user‘s home directory in the file
log.xxxxxxxx where xxxxxxxx is the transaction name.

TIPDXC - Delayed Transfer Control

Call this subroutine to accomplish a delayed transfer of control to another
program. The calling program must specify (in the field PIB-TRID) the
transaction name of the program to receive control. The calling program
then terminates. The called program receives control after the next input
message is available from the terminal.

The calling program's CDA data is copied to the CDA of the next program
for a length which is the least of:

1.1.the size of the calling program's CDA area

1.2.the size of the called program's CDA area

1.3.

Syntax:

CALL "TIPDXC"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program to which control is being transferred.

PIB-TRID
Must be set to the transaction name of the program to
which control is to be transferred.

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-
FOUND

The program identified by the value in the field PIB-
TRID is not defined in the TIP definition, the load
module could not be found, or there was insufficient
memory to load the program. If you receive bad status
and want a more detailed description, use PIB-DETAIL-
STATUS.

See PIB-DETAIL-STATUS in PIB Process Information
Block for more information.

PIB-
The user running the calling program does not have
sufficient security to run the requested program or the

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 37

 PIB-STATUS Meaning

SECURITY requested program is locked at this time of day.

Example:

MOVE "????????" TO PIB-TRID

CALL "TIPDXC"

GO TO ERROR-CALLING-TIPDXC

 Note: The program receiving control will not be scheduled until an input
message is available. The calling program must, therefore, avoid the
pitfall of issuing the call to TIPDXC without having first issued an output
message to permit a subsequent input message to be accepted.

TIPJUMP - Direct Transfer Control

TIPJUMP This call directly transfers control to another program on the
same program stack level. The calling program must move the name of
the transaction to receive control to the PIB-TRID field and then call
TIPJUMP. Only TIP/30 native mode programs may be called using
TIPJUMP.

 Note: This call is unlike all other subroutine calls that PCS provides to transfer
control from program to program because all of the program‘s work areas
(PIB, CDA, MCS, WORK) are directly handed to the program that
receives control!

In this special situation, the catalogue entries which pertain to area sizes
for the called program are not relevant and are ignored.

The TIPJUMP call can be viewed as a way for a transaction program to
continue execution using a different load module.

Syntax:

MOVE ‟????????‟ TO PIB-TRID

CALL ‟TIPJUMP‟

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-
FOUND

The program is not catalogued, or the load module
could not be loaded, or the field PIB-TID was
erroneously modified by the program prior to calling
TIPJUMP.

If you receive bad status and want a more detailed
description, use PIB-DETAIL-STATUS. See PIB-
DETAIL-STATUS in "PIB — Process Information
Block" .

TIP Programming Reference

38 Proprietary IP-622

 PIB-STATUS Meaning

PIB-
SECURITY

The user running the initiating program does not
have a high enough security to run the requested
program or the transaction is locked at this time of
day.

TIPFLAG - Flag Services

TIP flag services provides user programs with the ability to manipulate up
to 32 binary switches. These switches (flags) are stored as bits of a full-
word within TIP and may be accessed by any TIP transaction program or
by console operator commands (see the description of operator
commands FLAG, ON, and OFF).

The program may set or clear a flag (set to 1 or clear to 0) or may
interrogate the current setting of a flag or flags. The flags may be used
individually or in combination.

An important feature of this subroutine is the ability for the program to
wait for one or more of the flags to be in a specific state (either off or on)
and then immediately flip the state of the flag or flags. This technique
allows a flag or flags to be used as a semaphore to queue access to an
event.

The TIPFLAG subroutine requires the programmer to provide a MASK
field to identify the subset of the 32 bit flags that are to be manipulated
(either set, cleared, or interrogated). This MASK field may have one or
more bits set on. In most applications, the program is interested in a
single one of the flags and, in such cases, only a single bit in the MASK is
on.

The bits in a full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPFLAG" USING function

 mask

 [result]

Where:

function
A character code (0 through 9) representing the function to
be performed by TIPFLAG:
 In the following descriptions, "set" means the value 1;
"clear" means the value 0.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 39

 0 Wait for any of the flag bits identified in the mask to
be set.

 1 Wait for all of the flag bits identified in the mask to
be set.

 2 Wait for any of the flag bits identified in the mask to
be set, then clear the flag bits identified by the
mask.

 3 Wait for all of the flag bits identified in the mask to
be set, then clear the flag bits identified by the
mask.

 4 Wait for any of the flag bits identified in the mask to
be clear.

 5 Wait for all of the flag bits identified in the mask to
be clear.

 6 Wait for any of the flag bits identified in the mask to
be clear, then set the flag bits identified by the
mask.

 7 Wait for all of the flag bits identified in the mask to
be clear, then set the flag bits indicated by the
mask.

 8 Set the flag bits indicated by the mask.
 9 Clear the flag bits indicated by the mask.

mask
A binary full-word that identifies the flags to be acted on by
this call to TIPFLAG. Each bit represents a flag. The bits of
the full-word are numbered from 31 to 0 from left to right.

result
The field that receives a copy of the flag word after the
indicated function is performed.

 An easy way to determine whether a flag (or flags) is on or
off is to specify function code 8 or 9 with a mask that is all
zero (meaning set or clear no flags). The result field after
the call to TIPFLAG provides a "view" of the current setting
of all the flags.

Example:

Assume that a flag bit (say flag 13) is nominated to control access to an
auxiliary printer (or some other "resource"). The basic scheme is:

 if flag 13 is set on, the resource is in use and prospective users of that
resource must wait for it (this is the same as saying wait for the flag to
go to zero!)

 when a program is finished using the resource, the flag must be set to
zero (cleared) so that other programs that are queued waiting for the
flag can be serviced - one at a time.

The following code illustrates the correct method for a program to "queue"
for the resource (by queuing for flag 13 in this case).

WORKING-STORAGE SECTION.

TIP Programming Reference

40 Proprietary IP-622

 ...

 COPY TC-FLAG.

 ...

 01 WORKAREA.

 ...

 COPY TC-BITS.

 ...

PROCEDURE DIVISION ...

 ...

8000-QUEUE-FOR-DEVICE.

 MOVE 8192 TO BIT-SWITCHES

*

* 8192 (decimal) = 2 ** 13

* 10 0000 0000 0000 (binary)

*

 CALL "TIPFLAG" USING WAIT-ALL-CLEAR-SET

 BIT-SWITCHES

*

* Control will not return til flag 13 is clear

*

* ...do our thing

*

* when we are finished, clear flag 13 so next

* queued program can get control

*

 MOVE 8192 TO BIT-SWITCHES.

 CALL "TIPFLAG"USING SET-OFF

 BIT-SWITCHES

The program first identifies which of the 32 flags are of interest (MOVE
8192 TO BIT-SWITCHES). The program then calls TIPFLAG with a
function code "WAIT-ALL-CLEAR-SET". This has the effect of pausing
the program until the specified flag is CLEAR and immediately setting the
flag before returning control to the program.

The program performs its function and, when finished, clears the flag to
allow other potential users to "enter the gate". It is important that all
programs which are queuing for flags use this technique to ensure that
only one program at a time is able to acquire control of the flag or flags.

 Note: In the above example, the choice of flag 13 made it quite feasible to move
a number to the full-word and thus obtain the proper bit pattern in the
mask. In practice, COBOL makes it very awkward to move 10 digits to a
binary full-word elementary item. This is exactly the situation that is
addressed by the subroutines TIPBITS and TIPBYTES described earlier
in this documentation.
 Instead of directly moving a value (say 8192 - representing flag 13) to the
mask field, the following technique can always be used:

 MOVE ALL 0 TO BYTE-SWITCHES

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 41

 MOVE 1 TO SWITCH-13

 CALL "TIPBITS" USING BIT-SWITCHES,

 BYTE-SWITCHES

TC-FLAG Copy Book:

The COBOL copy book TC-FLAG provides a complete set of TIPFLAG
function codes. COBOL programs can make use of the subroutines
TIPBITS and TIPBYTES to convert bits to bytes or vice versa.

Since this copy book uses COBOL VALUE clauses, it must be placed in
the program's WORKING-STORAGE SECTION.

**

* USED AS FUNCTION CODES TO DIRECT TIP FLAG SERVICES *

**

 05 WAIT-ANY-SET PICTURE X VALUE "0".

 05 WAIT-ALL-SET PICTURE X VALUE "1".

 05 WAIT-ANY-SET-CLEAR PICTURE X VALUE "2".

 05 WAIT-ALL-SET-CLEAR PICTURE X VALUE "3".

 05 WAIT-ANY-CLEAR PICTURE X VALUE "4".

 05 WAIT-ALL-CLEAR PICTURE X VALUE "5".

 05 WAIT-ANY-CLEAR-SET PICTURE X VALUE "6".

 05 WAIT-ALL-CLEAR-SET PICTURE X VALUE "7".

 05 SET-ON PICTURE X VALUE "8".

 05 SET-OFF PICTURE X VALUE "9".

TC-BITS Copy Book

The COBOL copy book TC-BITS defines work areas that may be used by
the COBOL program that is manipulating TIPFLAGs. This copy book is
also used in conjunction with the subroutines TIPBITS and TIPBYTES.

This copy book is normally placed in the program's WORKAREA.

TIPFORK - Start Program at a Terminal

Start a program running on another terminal (TIP session) in the network
as an independent, asynchronous process. The program that is started at
another terminal runs independently of the initiating program.

Each TIP session has an associated PIB-TID and PIB-TERM-NAME. The
values can be set by creating terminal definitions with smterm or by using
the environment variable TIPTERM. See smterm in the TIP Utilities
manual for details.

The TIP shell must be running at the target terminal. This means that the
ability to start a program on the target TIP session depends on the
security attributes of the target session and not the security attributes of
the session issuing the TIPFORK. This is a change from TIP/30.

If another program is currently running at the specified TIP session then
the request will be queued (in FIFO order). When the session returns to

TIP Programming Reference

42 Proprietary IP-622

the TIP prompt (no programs are active) then the queued requests will be
run in sequence (one at a time).

This queuing capability (not provided with TIP/30) eliminates one of the
possible error conditions that an application has to deal with.

Before issuing this call, the calling program must:

 move the transaction-id of the program to be started to PIB-TRID

 move the 8-character terminal name to PIB-TERM-NAME or move
the 4-character terminal identifier to PIB-TID.

The calling program's CDA data is copied to the CDA of the next program
for a length that is the least of:

 the size of the calling program's CDA area

 the size of the called program's CDA area

 the value specified by the calling program in the field PIB-CDA-
LENGTH.

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 MOVE '????????' TO PIB-TRID

 MOVE '????????' TO PIB-TERM-NAME

 CALL 'TIPFORK'

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started.

PIB-TRID
Must be set to the transaction name of the program that is
to be started

PIB-TID
PIB-TID is a 4-byte field to be compatible with TIP/30.

I f PIB-TERM-NAME contains spaces, LOW-VALUES, or
the caller's terminal name, and PIB-TID contains spaces,
low-values, or the caller's terminal id, the forked program
will run in the background. See TIPFORK - Start
Background Program.

PIB-TERM-NAME
PIB-TERM-NAME defaults to the terminal name that you
are currently signed on to, and you do not need to alter it
during a TIPFORK operation if the PIB-TID field is set
correctly to the terminal to which you would like the
transaction routed.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 43

 The reserved terminal names *BYP and *MST may be
moved to the field PIB-TERM-NAME to start a new
process running on the bypass terminal or master terminal
respectively. The bypass and master terminal can be
examined or modified with the smterm utility.

Example: By Name

*

* START PRINT PROGRAM ON BYPASS TERMINAL

*

 MOVE 'PRINTPGM' TO PIB-TRID

 MOVE '*BYP ' TO PIB-TERM-NAME

 CALL 'TIPFORK'

 IF NOT PIB-GOOD PERFORM REPORT-ERROR

Example: By TID

*

* START PRINT PROGRAM ON BYPASS TERMINAL

*

 MOVE 'PRINTPGM' TO PIB-TRID

 MOVE '*BYP' TO PIB-TID

 CALL 'TIPFORK'

 IF NOT PIB-GOOD PERFORM REPORT-ERROR

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
There is no TIP session with the PIB-TID
(terminal id) or PIB-TERM-NAME.

PIB-SECURITY

The user running the initiating program does not
have sufficient security clearance to run the
requested program or the requested program is
not available because it is locked at this time of
day.

Additional considerations:

1.4.If the transaction (specified in PIB-TRID) does not have a security
entry in any of the active groups at the targeted TIP session,
TIPFORK is successful (it returns PIB-GOOD), but an error
message is displayed on the target TIP session:

 "Invalid transaction code! xxxxxxxx"

 xxxxxxxx is the value of PIB-TRID when TIPFORK was called.

1.5.If the TIP session at the requested terminal does not have security
(permission) to run the requested program then TIPFORK is
successful (returns PIB-GOOD), but an error message is

TIP Programming Reference

44 Proprietary IP-622

displayed on the targeted TIP session:

 Security prevents use of xxxxxxxx

 xxxxxxxx is the value of PIB-TRID when TIPFORK was called.

1.6.On return from the call, the fields PIB-TRID and PIB-TID will be
restored to the values appropriate for the program that issued the
call to TIPFORK.

TIPFORK - Start Background Program

This call starts a specified program running in "background". A
background program is a transaction program that is not associated with
any terminal - essentially a free-standing program. The background
program runs independently of the initiating program.

The calling program's CDA data is copied to the CDA of the next program
for a length that is the least of:

 the size of the calling program's CDA area

 the size of the called program's CDA area

As a background process, the program has access to all TIP functions
except those functions that directly solicit input from a terminal.

Background programs are not prohibited from using calls that solicit
terminal input; they are, however, not allowed to actually use the terminal
for input. A background program cannot use input redirection.

A background process is useful for time consuming file processing
operations, for which the user does not require a response.

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 MOVE "????????" TO PIB-TRID

 CALL "TIPFORK"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started in background.

PIB-TRID
The field PIB-TRID must be set to the transaction name of
the program that is to be started in background.

Example:

*

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 45

* START "USERS" TRANSACTION IN BACKGROUND

*

 MOVE "USERS" TO PIB-TRID

 CALL "TIPFORK"

 IF NOT PIB-GOOD

 PERFORM REPORT-ERROR

 END-IF

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-FOUND

The program identified in the PIB-TRID is not
defined in the TIP definition, or the executable
could not be loaded.

There are no resources available.

If you receive bad status and want a more
detailed description, use PIB-DETAIL-STATUS.

See PIB-DETAIL-STATUS in PIB Process
Information Block for more information.

PIB-SECURITY

The user running the initiating program does
not have sufficient security clearance to run the
requested program or the requested program is
not available because it is locked at this time of
day.

Additional Considerations:

1.7.The program issuing the call to TIPFORK will not receive control
until the child process has started running unless an error is
reported.

1.8.The user id of the person running the program is carried forward
into the order of search path of the process being started subject
to the following condition (TIP does this internally):

 BACK$nnn, caller's user id, caller's groups, TIPY

 or

 If the user was defined with:

8.1.1. SEARCH=GROUPS, the search path of the new process
becomes: caller's groups, TIPY

8.1.2. SEARCH=NO, the search path of the new process
becomes: TIPY

TIP Programming Reference

46 Proprietary IP-622

TIPFORKW - Start Program in New Window

TIPFORKW has not been implemented in TIP Studio. For the functionality
found with TIPFORKW prior to issuing the call to TIPFORK change the
PIB-TID field to the name of the terminal you want the program to run on.
This is exactly the way TIP/30 worked.

This call starts a specified program running in a newly created window
under TIP/fe. You must be running TIP/fe to use this.

The calling program's CDA data is copied to the called program‘s CDA for
a length that is the smallest of:

 The size of the calling program's CDA area

 The size of the called program's CDA area

 The value specified by the calling program in the field PIB-CDA-
LENGTH.

As a new transaction running with TIP/fe, the program has access to all
TIP/ix functions..

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 MOVE "????????" TO PIB-TRID

 CALL "TIPFORK"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started.

PIB-TRID
Set this field to the transaction name of the program to be
started.

Example:

*

* START "CREDRPT" TRANSACTION IN A NEW WINDOW

*

 MOVE "CREDRPT" TO PIB-TRID

 CALL "TIPFORKW"

 IF NOT PIB-GOOD

 PERFORM REPORT-ERROR

 END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND The program identified in the PIB-TRID is

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 47

PIB-STATUS Meaning

not defined in the TIP/ix definition, or the
executable could not be loaded.

There are no resources available.

If you receive bad status and want a more
detailed description, use PIB-DETAIL-
STATUS. See PIB-DETAIL-STATUS in

PIB Process Information Block on page
20.

PIB-SECURITY

The user running the initiating program
does not have sufficient security clearance
to run the requested program or the
requested program is not available
because it is locked at this time of day.

Additional Considerations:

 The program issuing the call to TIPFORKW will not receive control
until the child process has started running unless an error is
reported.

 The user id of the person running the program is carried forward
into the order of search path of the process being started subject
to the following condition (TIP/ix does this internally):

 caller's user id, caller's groups, TIPY

 or

 If the user was defined with:

 SEARCH=GROUPS, the search path of the new process
becomes: caller's groups, TIPY

 SEARCH=NO, the search path of the new process becomes:
TIPY

TIPGRPS - Retrieve Elective Groups

Use this call to retrieve the elective groups to which the user has access.

Syntax:

CALL "TIPGRPS" USING GRPS

Where:

GRPS
A data structure that is described by the following copy
book (TC-GRPS):

TIP Programming Reference

48 Proprietary IP-622

TC-GRPS Copy Book

----------------- --

* *

* TC-GRPS: FORMAT OF TABLE RETURNED FROM 'TIPGRPS' *

* *

* INPUT: MOVE NUMBER-OF-ENTRIES-WANTED TO GRPS-MAX *

* CALL 'TIPGRPS' USING GRPS. *

* *

* OUTPUT: GRPS-ACTUAL WILL BE THE NUMBER OF ENTRIES RETURNED *

* GRPS-NAME (X) HOLDS THE GROUP NAMES AS THEY *

* APPEAR IN THE ORDER OF SEARCH *

--

 05 GRPS.

 10 GRPS-MAX PICTURE 9999 BINARY.

 10 GRPS-ACTUAL PICTURE 9999 BINARY.

 10 GRPS-NAMES.

 15 GRPS-NAME PICTURE X(8)

 OCCURS 16 TIMES.

Where:

GRPS-MAX
A binary half-word that is set by the calling program to a
value between 1 and 16 (inclusive).

 The value placed in this field specifies the maximum
number of group names that are to be returned. Under
most circumstances, the program requests 16 (the
maximum).

GRPS-ACTUAL
A binary half-word that is set after the call to the number of
group names actually returned by the subroutine.

 This value will not exceed the value provided in GRPS-
MAX.

GRPS-NAME
An array of group names. Only GRPS-ACTUAL of these
will have resultant values. This array corresponds (in one-
to-one order) with the elective groups in the user's current
order of search..

TIPGRPST - Change Elective Groups

This call alters the elective groups to which the current user has access
and, therefore, alters the user's order of search. The alteration is
temporary; the changes remain in effect for the current session or until
the groups are altered again.

The calling program supplies a list of group names that are to be used as
the user's elective groups. After a successful call to this subroutine, the
user's order of search may be changed.

Syntax:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 49

CALL "TIPGRPST" USING GRPS

Where:

GRPS
A data structure that is described by the TC-GRPS copy
book. See TIPGRPS on page 47 for a listing and
explanation of the filed in the TC-GRPS copybook.:

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND

One or more of the suggested group names is not
in the user's groupset(s).

If you receive bad status and want a more detailed
description, use PIB-DETAIL-STATUS. See PIB-
DETAIL-STATUS in PIB Process Information Block
for more information.

New way of handling groups on TIP/as:

To summarize the differences in assigning groups between TIP/30 or
TIP/ix and TIP/as:

 Independent elective groups from TIP/30 and TIP no longer exist.
Groups are now only assigned to users via the master group set
and logon set.

 Logon set must be a subset of master group set. This is a new
requirement on TIP Studio that should improve the implementation
and management of group sets. Master group set contains all
groups that a user can ever access. Logon set consists of those
groups that are active when the user starts a session. TIPGRPST
allows a program to modify the active groups to any group in the
master group set.

Additional Considerations:

 If the first group name contains an asterisk (*), the TIPGRPST
subroutine resets the user's elective groups to the elective groups
defined for the user in the TIP definition.

 If a supplied group name is spaces, the corresponding group
name in the order of search will be set to spaces (implying "no
group here").

 Warning: The subroutine will make either all of the requested alterations or none of
them. If any of the requested groups names is not within the user's
groupset, the TIPGRPST subroutine will make no changes!

TIP Programming Reference

50 Proprietary IP-622

TIPMSG - Retrieving Error Messages

This function allows your program to retrieve error messages from the TIP
error message file. See the mfm utility in TIP Utilities, ARP-617-00 for a
description of how to create, change, or delete the error file messages.

The discussion of the mfm utility also includes an explanation of edit
codes used in supplying optional variable data that is merged with the
message text (MSGD-TEXT).

Syntax:

CALL "TIPMSG" USING FCS-GET

 MSG-PACKET

 MSG-DATA

 [msg-variable]

Where:

FCS-GET
Function code from the TC-FCS copy book.

MSG-PACKET
The TIPMSG interface packet from the TC-MSG copy
book.

MSG-DATA
The data record returned by TIPMSG (as outlined in the
TC-MSG copy book.)

msg-variable
If you intend to use variable input in your messages you
must define a MSG-VARIABLE field in your program. See
the discussion of the mfm utility for an explanation of edit
codes used in supplying optional variable data that is
merged with the message text (MSGD-TEXT).

TC-MSG Copy Book

05 MSG-PACKET.

 10 MSG-PACKET-IN.

 15 MSGP-LANGUAGE PICTURE X.

 15 MSGP-PRODUCT PICTURE X(8).

 15 MSGP-NUMBER PICTURE X(6).

 10 MSG-PACKET-OUT.

 15 MSGP-CLASS PICTURE X.

 15 MSGP-FLAGS PICTURE X(4).

05 MSG-DATA.

 10 MSGD-LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE X(2).

 10 MSGD-CONTROL PICTURE X.

 10 MSGD-TEXT PICTURE X(240).

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 51

The layout of TC-MSG closely follows the record layout of the error
messages in the TIP error message file. The following describes fields in
TC-MSG that you may use in your program to supply information to
TIPMSG:

MSGP-LANGUAGE
Specify a national language.
Default: American English.

MSGP-PRODUCT
The product name (for example: TIPIX)

MSGP-NUMBER
Message number (for example: ALL000)

The following describes fields TIPMSG returns to your program:

MSGP-CLASS
The message class as follows:

 space Informational
 C Catastrophic
 E Error
 I Informational
 W Warning
 * Message not found or I/O error on

 TIP error message file.
 > Product name not defined.
 ! Call function illegal (not FCS-GET)
 < Message requires variable data but none

supplied.

MSGP-FLAGS
Application dependent flags

MSGD-LENGTH
The length of the message plus five bytes for header
information (length and print code.)

MSGD-CONTROL
The print control code

MSGD-TEXT
The message text.

Below is an example of an MFM utility screen that displays some of the
data and message text fields that you complete when you add error
messages to the TIP error message file:

T I P / i x - Message File Maintenance TF$MFM1A
 Function: CH
===

Language: A
 Product: TIPIX___

TIP Programming Reference

52 Proprietary IP-622

 Msg-id: 000014 American English
 Class: _ (Information, Warning, Error, Catastrophic)
 Flags: ____ (Application dependent flags)
 Format: ________ (Maintenance screen format name)
 Print-code: _____ (HOME,PSPnn,PSKnn,SPnn,SKnn -
default=Print SPace01)
 Compress?: N (Y=Multiple spaces are removed from
returned message)
 <-----------------M-e-s-s-a-g-e---T-e-x-t------------------>
 <---:----1----:----2----:----3----:----4----:----5----:----6
 Record successfully
updated.________________________________ (60)

___________ (120)

___________ (180)
 <-----------------C-u-r-r-e-n-t---T-e-x-t------------------>
 Record successfully updated.

Date of creation 08/45/84 and last change 93/08/24 < _ >
 F1=Refresh F2=Next Record F6=Delete Msg Wait=Cancel

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-
FOUND

The record
does not exist.

Example of TIPMSG CALL use:

Below is an example of the WORKING-STORAGE-SECTION definitions
and procedures of a COBOL program that retrieves TIP error file
messages:

WORKING-STORAGE-SECTION.

01 ERROR-MESSAGES. COPY TC-MSG OF TIP.

 05 MSG-VARIABLE PICTURE X(80).

RETRIEVE-MESSAGE SECTION.

 MOVE "A" TO MSGP-LANGUAGE.

 MOVE "TIP30" TO MSGP-PRODUCT.

 MOVE "ML1001" TO MSGP-NUMBER.

 MOVE "user id" TO MSG-VARIABLE.

 CALL "TIPMSG" USING FCS-GET

 MSG-PACKET

 MSG-DATA

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 53

 MSG-VARIABLE

 EXIT SECTION.

If you intend to use variable input in your messages you must define a
MSG-VARIABLE field in your program. See the discussion of the mfm
utility for an explanation of edit codes used in supplying optional variable
data that is merged with the message text (MSGD-TEXT).

TIPPEER - Peer-to-Peer Processing

TIPPEER implements synchronous, two-way communication between
two cooperating TIP transaction programs. The transactions may be
executing on the same or different TIP systems.

To initiate a peer-to-peer conversation, a program must supply control
information by altering the contents of its PIB (Process Information Block).
The initiator program sets the PIB-TRID and PIB-LOCAP fields to specify
the transaction program it wants.

You invoke TIPPEER functions with COBOL CALL statements. The
format is similar to that used by TIPFCS. The first parameter is always a
function code. The second parameter is a logical name packet for the
peer-to-peer conversation. The third parameter is a record area.

There are only 4 possible functions used with TIPPEER. They are:
OPEN, CLOSE, GET and PUT. You can use the standard TIPFCS
function codes found in the TC-FCS COPY book (FCS-OPEN, FCS-
CLOSE, FCS-GET and FCS-PUT).

The record is in standard variable-length record format. The first binary
half-word holds the record length (including the 4-byte header), followed
by a two-byte filler, and then the record text.

Normally, the record text should always be valid display data (that is, all
ASCII or EBCDIC characters — no binary, signed numeric, or packed
decimal fields). The reason for this is that TIPPEER may be maintaining a
conversation between two transaction programs that are executing on
different computers with dissimilar architectures. As TIPPEER passes
records from one system to the other, it translates the contents of each
record to the appropriate character set for the computer receiving the
data.

However, your application can specify an option to the open function to
leave the data ―as is." This would be useful, if the data contained some
binary or packed information. Since TIPPEER does not know the layout of
the data, it must either assume that the entire record is character data
(and translate it), or assume that it contains some non-character data
(and leave the entire record alone).

TIP Programming Reference

54 Proprietary IP-622

Example

05 PEER-PKT.

 10 PEER-NAME PICTURE X(8).

 10 PEER-STS PICTURE X.

05 PEER-RECORD.

 10 RECORD-LENGTH PICTURE 9(4) BINARY SYNC.

 10 FILLER PICTURE XX.

 10 PEER-DATA PICTURE X(length of record).

 CALL "TIPPEER" USING FCS-function,

 PEER-PKT,

 [PEER-RECORD]

TIPPEER Logical Name Packet

Every call to TIPPEER must specify the logical name packet. The logical
packet name contains an application-assigned name for the peer-to-peer
conversation.

The application that is requesting the conversation is the client
application. The client application talks to the server application.

An application may initiate (be the client in) one or more conversations.
However, server applications may only take the server role in one peer-
to-peer session. A server application may in turn initiate other peer-to-
peer conversations. In this case, the server application would become the
client application for the new conversation(s) it initiates.

The actual name placed in the packet is up to the application. It must not
conflict with any other file name that appears in the application‘s active
file table (AFT). When the server application starts, the TIP system
creates an AFT entry with the name of $PRIMARY. Therefore, the server
application must use the logical name $PRIMARY when referring to the
conversation with its client application.

Record Passing

Within a TIPPEER conversation, both parties must cooperate to produce
an orderly conversation. We all know how chaotic it is when both parties
of a telephone conversation constantly speak without waiting for the other
side to finish. The same is true for a TIPPEER conversation. One side
has to be in receive mode when the other side is in transmit mode. After
your application says something (by issuing a PUT), it should listen (by
issuing a GET).

When the server application is first initiated, it is in send mode. This
means that the first operation it should perform is a PUT function to send
a record back to the client. This record is typically an acknowledgment
record that confirms to the client application that the server has started
successfully and is ready to proceed.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 55

The following table illustrates the logic flow in a typical TIPPEER
conversation:

Client Server

Client application fills in the PIB
and issues a TIPPEER FCS-
OPEN function to establish a
peer-to-peer conversation.

TIP verifies the PIB fields. If the
PIB-LOCAP field contains a
different value than the current
LOCAP, TIP established an link
to the identified LOCAP.

TIP schedules the server program (either locally or remotely based
on the definition of the server program or PIB-LOCAP value).

The client application now
receives control back from the
OPEN request. The application
can check the PIB-STATUS to
determine if any error occurred.

If the open was successful, the
client application would now
issue a TIPPEER FCS-GET and
wait for a record to arrive from
the server.

The server program would begin
execution and perform its start-
up operations.

If the server does not want to
talk, it must terminate by issuing
a TIPRTN function call.

Otherwise, the server program
(which now has the send token)
issues a TIPPEER FCS-PUT
function to send a record to its
client acknowledging that it has
started successfully.

The server program would then
issue a TIPPEER FCS-GET
function to wait for a record from
its client application.

The client program will receive

TIP Programming Reference

56 Proprietary IP-622

Client Server

the record from the server,
process it and will send a record
back to the server.

 The conversation will continue until one side decides to terminate
the conversation.

 Typically, the client will decide that it no longer requires the server
and issues an FCS-CLOSE function on the TIPPEER conversation.

 (If the server wanted to terminate the conversation, it would issue
a TIPRTN function call.)

The client program issues a
TIPPEER FCS-CLOSE to the
connection.

The server program will receive
PIB-EOF status on the GET. At
this point, TIP breaks the
connection with the client. The
server would likely perform its
clean up functions (close files,
etc.) and issue a TIPRTN
function call to terminate.

PIB Fields Used

The TIP Process Information Block (PIB) contains fields that are needed
for peer-to-peer conversations. These fields are:

Field Description

PIB-LOCAP
Optional. This is the name of the TIP system (LOCAP)
where the server application will run. A host computer may
run several TIP systems.

PIB-TRID

This is the name of the server transaction program to be
scheduled. If you do not specify the LOCAP, the PIB-TRID
(transaction ID) will determine which LOCAP will initiate the
server.

PIB-UID
This is the id of the user who is running the application that
is requesting the conversation

PIB-TID
This is the terminal name for the application that is
requesting the conversation.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 57

Request Conversation, OPEN

A client application that wants to initiate a conversation must fill in PIB-
TRID with the name of the transaction program it wants. It may also fill in
the PIB-LOCAP field to make the transaction run on a specific LOCAP. If
the client application changes the PIB-LOCAP, TIP initiates the
transaction on the specified LOCAP. If the PIB-LOCAP does not change,
and the transaction has no alternative LOCAP, then it is initiated on the
local TIP system. If a TIPPEER server wants to reject a session as soon
as it starts, it should call TIPRTN.

The third parameter on the OPEN request is optional. If specified, it
identifies a standard TIP file descriptor packet (TC-FDES). The field
FDES-FCS-PERM within this packet is used to indicate whether
translation is required. If not specified, the default is to translate the data
to the character set of the receiving system. If translation is not wanted,
set FDES-FCS-PERM to ―N‖.

Example

03 FILE-DESCRIPTOR. COPY TC-FDES.

 05 PEER-PKT.

 10 PEER-NAME PICTURE X(8).

 10 PEER-STS PICTURE X.

 MOVE “SERVER1" TO PIB-TRID

 MOVE “CLIENT1" TO PEER-NAME

 MOVE FCS-PERM-TRANSLATE TO FDES-FCS-PERM

 CALL “TIPPEER" USING FCS-OPEN

 PEER-PKT

 FILE-DESCRIPTOR

 IF NOT PIB-GOOD

 conversation did not get started ...

 END-IF

Error Conditions

PIB-STATUS Meaning

PIB-NOT-FOUND
The transaction program or the LOCAP is
not available.

PIB-SECURITY
The request did not pass the system security
checks.

PIB-EOF
TIP found the transaction, but it (the server
application) rejected the conversation.

PIB-WRONG-MODE

A logic error occurred. A client program
specified "$PRIMARY" as the file name, or
the open statement contained incorrect
parameters

TIP Programming Reference

58 Proprietary IP-622

PIB-STATUS Meaning

PIB-DUP-AFT
A conversation or file of this name is already
in the AFT.

PIB-NO-MEMORY
The system did not have enough free
memory.

PIB-MISSING-PARAMS Incorrect number of parameters.

Close the Conversation, CLOSE

Only the client application may issue a CLOSE. This will close the
conversation. The server program will get a PIB-EOF status on the next
TIPPEER call, and the TIP system closes the conversation. Issuing the
FCS-CLOSE function will create a commit point for the transaction. This
means that updates done by both the client and the server will be
committed at this point.

Example:

MOVE "CLIENT1" TO PEER-NAME

CALL "TIPPEER" USING FCS-CLOSE

 PEER-PKT

Additional Considerations:

 Once the sever application receives control back from the TIPPEER
call (likely from an FCS-GET function) with PIB-EOF status, it is no
longer participating in the same transaction as its client. From this
point forward, the server is running independently from the client and
any further updates it performs are not coordinated with its client
application.

 The server application may terminate the conversation by doing a
CALL "TIPRTN" at any time. However, if the server encounters a
condition that would require it to terminate the TIPPEER conversion, it
should send a ―goodbye‖ record to the client program indicating that
the client should close the connection. The server and the client
programs must agree on the format of the goodbye record. The client
interprets it as a request by the server to terminate the connection.
After sending the goodbye record to the client, the server would issue
an FCS-GET request and wait for the client to terminate the
connection. The server will recognize that the connection has been
broken, because it receives a PIB-EOF status upon completion of the
FCS-GET request.

Send a Record, PUT

To send a record to the other side of a conversation, use the FCS-PUT
function.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 59

You must specify the record length. For example, if you have 10 bytes of
data, you must specify a length of 14. This is because you have to
account for the 2-byte length field and the 2-byte filler.

If you want TIP to perform translation for you, the record must not contain
any binary or packed decimal data. In other words, all data must be ASCII
or EBCDIC characters. TIP will translate the data to the other computer's
character set.

If you specified that you do not want translation (when you opened the
peer-to-peer conversation), the entire record is left ‗as is‘.

Example:

05 PEER-RECORD.

 10 RECORD-LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 PEER-DATA PICTURE X(rec-len).

 MOVE length TO RECORD-LENGTH

 MOVE data TO PEER-DATA

 MOVE "CLIENT1" TO PEER-NAME

 CALL "TIPPEER" USING FCS-PUT

 PEER-PKT

 PEER-RECORD

 IF PIB-GOOD

 ... record sent ok ...

 ELSE

 ... record was not delivered ...

 END-IF

Note: After successfully issuing an FCS-PUT to the TIPPEER
connection, the application must issue an FCS-GET to wait
for a reply, or FCS-CLOSE to end the conversation. In
other words, you cannot issue a FCS-PUT right after an
FCS-PUT.

Receive Record, GET

When an application wants to receive a record it issues a GET request.
The issuing program must set the record length field to the maximum
length (including the 4 byte header) that it can accept. After the GET
function is complete, assuming no error occurred, the length field will
contain the actual length of the record received.

Example:

MOVE maxlength TO RECORD-LENGTH

MOVE "CLIENT1" TO PEER-NAME

CALL "TIPPEER" USING FCS-PUT

 PEER-PKT

TIP Programming Reference

60 Proprietary IP-622

 PEER-RECORD

CALL "TIPPEER" USING FCS-GET

 PEER-PKT

 PEER-RECORD

EVALUATE TRUE

 WHEN PIB-GOOD

 ... record received from other peer ok ...

 WHEN PIB-NOT-FOUND

 ... The application has attempted to do two GETs,

 a GET must be followed by a PUT or CLOSE ...

 WHEN PIB-EOF

 ... other peer program closed conversation ...

 WHEN PIB-MSG-AVAIL

 ... record available from local terminal ...

 WHEN OTHER

 ... record was not received, some other error ...

END-EVALUATE

Primary Peer Conversation for the TIPPEER Server

When an application program is scheduled to service a conversation
initiated by a client program, the initial TIPPEER conversation with the
client is already established. The server program does not have to issue
an FCS-OPEN as TIP has already done this as part of the program
initiation function. When TIP creates the TIPPEER connection for the
server program to use, it creates it with the name of $PRIMARY. The
server must use this name when communicating to its client partner.
Since the server did not open the $PRIMARY connection, it should not
attempt to close it. TIP will automatically terminate the conversation when
the server program issues a TIPRTN.

Once initiated, the server application may establish other TIPPEER
conversations if needed. In this case, the server would take on the role of
a client in any new conversations that it may initiate.

Example:

MOVE maxlength TO RECORD-LENGTH

MOVE "$PRIMARY" TO PEER-NAME

CALL "TIPPEER" USING FCS-GET

 PEER-PKT

 PEER-RECORD

EVALUATE TRUE

 WHEN PIB-GOOD

 ... record received from other peer ok ...

 WHEN PIB-NOT-FOUND

 ... The other application passed

 ... "Permission to GET"

 ... This application should only do PUT or CLOSE

 WHEN PIB-EOF

 ... other peer program closed conversation ...

 WHEN PIB-MSG-AVAIL

 ... record available from local terminal ...

 WHEN OTHER

 ... record was not received, some error ...

END-EVALUATE

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 61

Transaction Processing Using TIPPEER

When a client program OPENs a TIPPEER session, and TIP schedules
the server program, the two programs are part of the same transaction.
This means that if either program issues a transaction end (TREN) either
implicitly (for example, with TIPMSGI) or explicitly (with FCS-TREN), then
TIP will secure the updates of both programs. Similarly, if either program
issues a rollback request, then both programs will have their respective
updates rolled back. This situation continues until one of the programs
breaks the TIPPEER connection.

These distributed transaction process capabilities of TIPPEER are in
effect without regard for where the client and server actually execute.
That is, even if the client program is running on one computer and the
server running on another, both programs are part of a single transaction.

TIPQUEUE - Record Queuing

In the previous section, you saw that Peer-to-Peer conversations are bi-
directional, connection-oriented dialogues that occur in real-time between
two cooperating applications. Just like phone calls.

In this section you will learn about TIPQUEUE. Record queuing is a
unidirectional, store-and-forward facility that is not real-time but does
provide for guaranteed record delivery, just like leaving a message on a
telephone answering computer.

The TIPQUEUE protocol is for applications that require client programs to
send records to server programs within a distributed or local TIP
environment. TIPQUEUE provides a connectionless protocol that
guarantees delivery of records from client programs to server programs.

TIPQUEUE allows transaction programs to queue records to named
queues. You use a TIP utility program to define the queues. (In other
words, the queues are defined outside your application.) The queue‘s
name is known to the network. Each named queue has a number of
properties that identify attributes of the queue, for example:

 the LOCAP where the queue is stored

 the name of the program that services the queue

 the interval at which the queue server program is scheduled.

A server program is a normal TIP transaction. TIP schedules the server
when the server‘s queue has records in it (and it is the right time to
schedule the server).

All records written to a queue are guaranteed to be delivered to their
respective server. This implies that if the server system is not available
then the local system will retain the records until the server system
becomes available. The server receives records from a queue in the
same order the client wrote them (FIFO).

TIP Programming Reference

62 Proprietary IP-622

The writing of a record to a queue is part of a transaction and the reading
of a record from a queue is also part of a transaction. If the transaction is
aborted, or the system stops before a record has been committed to a
queue, then the TIP recovery subsystem (that is, rollback) restores the
queue to a point of consistency.

Client applications can send records to server applications via a named
queue. Each named queue defined in a TIP system is bound to one
server application. That is, there is a one-to-one mapping between queue
names and server names. The servers are simply transaction programs
that are defined in the TIP environment.

Local and Remote Queues

Every TIP system has a local TIPQUEUE repository where records are
held until they can be processed. When a queue is defined to be serviced
locally, the identified server program is scheduled at the appropriate time
to process the queued records. If, however, the queue is defined to be
serviced remotely, the queued records must be transferred to the remote
TIP system. Once the records have been transferred and stored in the
remote TIPQUEUE repository, then the appropriate server will be
scheduled, in that TIP system, to process the records.

The following diagram illustrates this record flow:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 63

The lifetime of records queued using TIPQUEUE is as follows:

 The records that a client application writes to a named queue
(using FCS-PUT), are committed to the local queue when the
application establishes a commit point. Clients can send records
to a queue that is defined on the same LOCAP as the clients or on
a remote LOCAP (this is transparent to the application program).

 When the client program has reached a commit point (TREN) and
it has written records to the queue, it will schedule a server
program.

 If the queue is defined to be serviced locally, the server is
scheduled. The queue definition determines whether the server is
scheduled immediately or on a timed basis.

 If, however, the queue is defined to be serviced on another TIP
system, then a special server program is scheduled. This special
server is part of the TIP system and is designed to move the
queued records from the local TIP system to the remote one. It

TIP Programming Reference

64 Proprietary IP-622

does this by establishing a TIPPEER conversation with a partner
program on the remote TIP system and transferring the records to
it. The partner program writes the records to the remote queue (its
local queue). When the partner program comes to a commit point,
that TIP system will go through the same process as identified
above to schedule a local server program.

 When the server program is scheduled, it OPENs the queue (as
an input file) and processes the queued records. When the server
application establishes a commit point, the records that it has read
from its queue are deleted from the queue.

The administrator must set the delivery interval to be large enough to
allow all the queued records to be delivered within the allocated time.
Even if the send status of the queue is CLOSED, all the records that have
already been queued for a particular queue will be delivered to their
destination, subject to the constraints of the delivery time.

 Note: Once a server starts, any change in its service status (time interval, time
lock, and so on) will not affect its operation. It will only be affected the
next time it is scheduled.

TIPQUEUE Service Time Schedule

You use the queue definition utility to specify the service time schedule.

The timelock values you specify when you define the queue control when
data is serviced, and when data is transferred between TIP systems.
There are two cases when defining a queue: a locally serviced queue,
and a remotely serviced queue. The following paragraphs deal with each
case.

For a locally served queue, the timelock values determine when (in 24-
hour format) the queue is locked. TIP does not schedule the server when
the queue is locked. For example, if you want the queue serviced
between 5pm and 11pm, specify the timelock as 23:00 to 17:00.

For a remotely serviced queue, the timelock value specifies the portion of
the day (in 24-hour format) during which the queue is locked. If a remotely
serviced queue is locked, the data is not transferred to the remote TIP
system. For example, if you want to transfer a queue over a phone line,
and you want to do it from 11pm to 6am when the rates are lower, specify
the timelock values as 06:00 to 23:00. At 11pm TIP unlocks the queue,
and starts to transfer the records. As the records are transferred to the
remote TIP system and written the queue on that system, the server will
be scheduled according to the queue definition on that TIP system

You can use the SMQUE utility to mark a queue as CLOSED or HELD. If
a queue is CLOSED, the server will still service records at the appropriate
times. However, applications cannot write new records to a CLOSED
queue. The state of the queue is only checked during the FCS-OPEN
function call. If the queue is closed, the TIP program will receive an error
when it attempts to open the queue.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 65

If a queue is marked HELD, then no server will be started to process or
transfer the records. Client programs can continue to write new records to
the queue (assuming it is not closed). The queue will not be serviced until
the HELD status is removed.

If the destination LOCAP is down when the delivery time takes effect, the
records are saved until the destination LOCAP comes back up again.
Then the records are transferred.

TIPQUEUE Interface (API)

You call the API with COBOL ‗CALL‘ statements. The first parameter will
always be the function code, the second parameter will be the logical
queue name packet, and the third parameter will be a record buffer (only
used on GET and PUT functions).

Example:

05 QUEUE-RECORD.

 10 RECORD-LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 RECORD-DATA PICTURE X(rec-len).

05 QUEUE-PKT.

 10 QUEUE-NAME PICTURE X(8).

 10 QUEUE-STS PICTURE X.

 CALL “TIPQUEUE” USING FCS-func,

 QUEUE-PKT,

 QUEUE-RECORD

The queue name that an application uses must already be defined in the
TIP catalogue. You can also use the TIP catalogue to direct a logical
queue name to the real queue name.

A queue server program that is initiated due to the arrival of a record on
the queue will be passed the name of the queue to open in the CDA as
parameter 1. The server program must use this name to identify the
queue it is to service.

Open the Queue - FCS-OPEN

Before an application can use a queue, it must issue a successful OPEN
function for the queue it wants to use. Client applications use the simple
(two-parameter) format of the open function.

However, server applications, must specify a third parameter on the FCS-
OPEN function. This parameter is a standard TIP file descriptor packet
(defined by the TC-FDES copy module) and must have the read-only
indicator set (FDES-FCS-PERM set to FCS-PERM-READONLY - this
value is declared in the TC-FCS copy module).

Example - Opening a queue as a client:

MOVE “QUEUE1” TO QUEUE-NAME

TIP Programming Reference

66 Proprietary IP-622

CALL “TIPQUEUE” USING FCS-OPEN

 QUEUE-PKT

IF NOT PIB-GOOD

 ... queue is not valid ...

END-IF

Example - Opening the queue as a server:

 03 FILE-DESCRIPTOR. COPY TC-FDES.

MOVE CDA-PARAM (1) TO QUEUE-NAME

MOVE FCS-PERM-READONLY TO FDES-FCS-PERM

CALL “TIPQUEUE” USING FCS-OPEN

 QUEUE-PKT

 FILE-DESCRIPTOR

IF NOT PIB-GOOD

 ... queue is not valid ...

END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-CLOSED
The queue is closed. Records cannot be
queued

PIB-NOT-FOUND
The specified queue does not exist in the
network

PIB-MISSING-PARAM Wrong number of arguments passed.

Additional Considerations

 When the TIP system schedules the queue server, it passes the
name of the queue in the CDA as parameter 1. The server should
use this name when attempting to open the queue. You can
manually schedule the queue server from a command line, by
entering the transaction code for the server with the queue name
as parameter 1.

 transact quename

 This is often convenient for testing or for situations where you
want to run the server immediately, but the normal definition of the
queue will not automatically schedule the server for some time.

Closing a Queue - FCS-CLOSE

When an application wants to stop processing records or is terminating, it
should issue the FCS-CLOSE function to close the queue.

Example:

CALL “TIPQUEUE” USING FCS-CLOSE

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 67

 QUEUE-PKT

IF NOT PIB-GOOD

 ... queue is not valid ...

END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The program has no associated named queue.

PIB-MISSING-
PARAM

Wrong number of arguments passed.

PIB-HELD
A lock cannot be obtained on the control record for
the queue file. Currently TIPQUEUE waits up to 30
seconds for a lock, after that it returns PIB-HELD.

Write a Record to a Queue - FCS-PUT

When a client application wants to send a record to a named queue, it will
use the FCS-PUT function. Sending a record to a queue is an
asynchronous activity, that is, the call returns as soon as the TIPQUEUE
system has accepted the record. The record will only be queued for
delivery after the client program has committed the record (via FCS-
TREN). Thus any records which are put into the TIPQUEUE system since
the last commit point can be rolled back.

You must specify the record length (4 or greater). The record itself should
not contain any binary or packed decimal data. All data must be valid
ASCII or EBCDIC characters.

The queue name may be a logical name that is further defined in the TIP
catalog.

Example:

05 QUEUE-RECORD.

 10 RECORD-LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 RECORD-DATA PICTURE X(rec-len).

05 QUEUE-PKT.

 10 QUEUE-NAME PIC X(8).

 10 QUEUE-STS PIC X.

 ...

 MOVE LENGTH TO RECORD-LENGTH

 MOVE DATA TO RECORD-DATA

 MOVE “WRKQUE” TO QUEUE-NAME

 CALL “TIPQUEUE” USING FCS-PUT

 QUEUE-PKT

TIP Programming Reference

68 Proprietary IP-622

 QUEUE-RECORD

 IF PIB-GOOD

 ... record queued OK ...

 ELSE

 ... record was not queued ...

 END-IF

Error Conditions

PIB-STATUS Meaning

PIB-MISSING-PARAM Wrong number of arguments passed

PIB-EOF You cannot send records of 0-length

PIB-OVERFLOW
You cannot send records of more than
32,767 bytes in length.

PIB-FUNCTION A system error occurred.

PIB-HELD

A lock cannot be obtained on the control
record for the queue file. Currently
TIPQUEUE waits up to 30 seconds for a
lock, after that it returns PIB-HELD.

Get a Record from the Queue - FCS-GET

The server application may receive records from its corresponding named
queue using FCS-GET. If no records are available on the queue, the
program will receive PIB-EOF status.

When receiving records, the server application must specify the maximum
record size and have a work area that is large enough to receive the
record. If the record received is larger than the maximum size specified
by the server, then TIP does not retrieve the record from the queue, but
sets the PIB-STATUS to PIB-OVERFLOW.

The reception of a record is part of a transaction. TIP removes the record
from the queue when the server establishes a commit point. To push any
records received since the last commit point back into the queue, do a
rollback.

Example:

MOVE maxlength TO RECORD-LENGTH

CALL “TIPQUEUE” USING FCS-GET

 QUEUE-PKT

 QUEUE-RECORD

EVALUATE TRUE

 WHEN PIB-GOOD

 ... record received from client OK ...

 WHEN PIB-EOF

 ... no records available ...

 WHEN other

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 69

 ... record was not received, - check pib status

END-EVALUATE

Upon return, record-length will contain the actual size of the record
received.

Error Conditions

PIB-STATUS Meaning

PIB-OVERFLOW
Record received is larger that the user's
record area.

PIB-MISSING-PARAM Wrong number of arguments passed.

PIB-EOF You cannot receive records of 0-length.

PIB-FUNCTION A system error occurred.

PIB-HELD

A lock cannot be obtained on the control
record for the queue file. Currently
TIPQUEUE waits up to 30 seconds for a
lock, after that it returns PIB-HELD.

Developing Client-Server Applications

Once a client starts writing records to a queue, or a server starts reading
records from a queue, TIP maintains record locks on the queue file until
the client reaches a commit point. (See Transaction end.)

When designing an application that uses TIPQUEUE, you should try to
minimize the interval over which records are locked. This is especially
true if several users run a program that writes to a given queue or if
several different programs write data to the same queue.

Server programs usually want to run until they have processed all the
records in the queue that they are servicing. Records that have been read
from the queue are not removed from the queue until transaction end
time. Therefore, as a server program is reading the queue, it should
create commit points (by issuing FCS-TRENs) at the appropriate time.
Otherwise, all the records read from the queue, and any other records
updated in files, remain locked until the transaction comes to a commit
point.

When an application issues a call to TIPQUEUE with a function code of
 FCS-PUT, FCS-GET, or FCS-CLOSE, a lock is requested on the control
record for the queue file. This lock is not relinquished until a commit point
has been reached in the transaction. This is necessary to allow queue
updates to be coordinated with updates on data files and to allow for the
possibility of rollback.

If a lock cannot be obtained on the control record for the queue file, these
functions (FCS-PUT, FCS-GET, and FCS-CLOSE) fail. Currently

TIP Programming Reference

70 Proprietary IP-622

TIPQUEUE waits up to 30 seconds for a lock on the control record and
after that time it returns PIB-HELD.

To minimize contention for the control record:

 Queues can be assigned to separate queue files. This is
recommended for heavily used queues. By default queues are
assigned to the file TIP$QUE.

 Keep transaction intervals to a minimum. Issuing an FCS-PUT to
a queue and then holding record locks while waiting for screen
input (by moving "H" to PIB-LOCK-INDICATOR) is not
recommended. Other transactions are unable to write to the
queue file while the record lock on the queue control record is
outstanding.

The best application strategy is to perform all necessary screen
interaction then issue file and queue updates.

A server program can also act as a client by not only receiving records,
but also sending records to named queues. That is, a server can receive
records, perform some preliminary processing on them, and then send
them to another queue for more processing by another server.

TIPRTN - End Online Program

This call terminates an online TIP program.

If the terminating program was running in background, TIP simply de-
allocates all of the areas of memory that were assigned to the program
and marks the background process table available. Background
programs, by definition, have no program to return to.

If the terminating program was running in foreground (at a terminal)
control returns to the program that called the terminating program.

If the terminating program was executed from the TIP command line,
control returns to the TIP Command Line Processor.

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 CALL "TIPRTN"

Where:

PIB-CDA-LENGTH
The program may move a value to this field to control the
number of bytes of data in the CDA that can potentially be
copied to the CDA of the program that is next to receive
control.
The number of bytes that are copied to the next program's
CDA is computed as the least of the values in the field PIB-
CDA-LENGTH in the PIB of each of the two programs

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 71

involved.
For example, a program that has used the CDA more or
less as a work area and does not wish to return any data to
the calling program can move zero to PIB-CDA-LENGTH.
In that case, the calling program's CDA will remain intact.

Error Conditions:

There is no return of control after a call to TIPRTN.

Additional Considerations:

 The contents of the CDA are copied back to the calling program
(unless the terminating program is running in background).

 The terminating program may place a value in the field PIB-RPG-
UPSI to return information to the calling program. This facility is
primarily intended to be used in situations where some sort of
exceptional status is to be returned to the calling program (and
requires the two programs to agree on some sort of convention
governing the contents of that field).

TIPSNAP - Snap Dump Memory

This subroutine allows a program to produce "snap" dumps of various
sections of memory. The specified locations of memory are displayed in a
report that is output to a file named "log.xxxxxxxx" where "xxxxxxxx" is
replaced by the name of the transaction that invoked TIPSNAP.

Syntax:

CALL "TIPSNAP" USING bgn-1 end-1

 [bgn-2 end-2]

 [bgn-3 end-3]

 [bgn-4 end-4]

Up to four pairs of parameters may be passed; each pair represents the
starting and ending location of an area of memory that is to be dumped.

Example:

CALL "TIPSNAP" USING WORK-AREA END-WORK

 MCS END-MCS

 Additional Considerations:

 This call is useful when debugging programs but should be
removed when placing a program in production.

 If the call is made using:

CALL "TIPSNAP" USING MCS WORK-AREA

The call will still occur but you may not get the contents of the
snap. This is because TIP startup code uses UNIX MALLOC and

TIP Programming Reference

72 Proprietary IP-622

each area is allocated separately. It could be that the MCS and
WORK-AREA may not be contiguous. If this happens, try using:

CALL "TIPSNAP" USING MCS END-MCS

where END-MCS is a field in the MCS area

 Micro Focus COBOL compiler directive "REF" should allows a
programmer to correlate an address found in the TIPSNAP dump
back to an address within the application program. This can speed
up debugging time by allowing the programmer to find exact
locations in the dump much faster than trying to progress it
manually.

Note: Inglenet does not release the "make.mf" file with this option
turned on since it does make the listing much larger than
usual.

TIPSUB - Perform Program

This call invokes another transaction program as if it was a subroutine of
the calling program. The calling program is suspended while the called
program executes. The called program may call another program, and so
on, to a maximum of 16 nested calls. When a called program terminates,
control returns to the calling program.

The classic example of the use of a facility such as TIPSUB is a program
that offers a menu or choice of several other programs. Typically, a
screen format is displayed that offers the terminal operator a number of
choices of application systems.

Once the user has indicated his choice and the selection has been
validated, the program calls TIPSUB to invoke the main transaction of the
application subsystem.

When the application subsystem terminates, control returns to the original
program, which repeats the cycle.

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 MOVE "????????" TO PIB-TRID

 CALL "TIPSUB"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is to be invoked.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 73

PIB-TRID
Must be set to the transaction name of the program that is
to be invoked.

If TIP Distributed Transaction Processing is configured, the program may
move a LOCAP name to the field PIB-TID to indicate to the TIPSUB
subroutine that the program that is to be performed is to execute on the
LOCAP name specified.

The contents of the CDA of the calling program are copied to the CDA of
the called program, to serve as the called program's initial CDA contents.
On return from the TIPSUB call, the CDA contents of the called program
are copied back to the CDA of the calling program.

The calling program's CDA data is copied to the CDA of the next program
for a length which is the least of:

 the size of the calling program's CDA area

 the size of the called program's CDA area

 the value specified by the calling program in the field PIB-CDA-
LENGTH.

Example 1:

MOVE SPACES TO CDA

MOVE "PAYUP" TO PIB-TRID

CALL "TIPSUB"

IF NOT PIB-GOOD

 PERFORM ERROR-ON-SUB

END-IF

Example 2:

* Perform "ACCTSUMM" txn on other LOCAP *

MOVE "PROD" TO PIB-TID

MOVE "ACCTSUMM" TO PIB-TRID

MOVE SPACES TO CDA

CALL "TIPSUB"

IF NOT PIB-GOOD

 PERFORM ERROR-ON-SUB

END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND

The program is not defined, the load
module could not be loaded or the size of
the load module and required areas
(CDA, WORK-AREA, MCS, etc.) is too
large for available memory.

If you receive bad status and want a
more detailed description, use PIB-

TIP Programming Reference

74 Proprietary IP-622

PIB-STATUS Meaning

DETAIL-STATUS. See PIB-DETAIL-
STATUS in PIB (Process Information
Block).

If the field PIB-TID was set to a different
LOCAP name before the call to TIPSUB,
this error condition is reported if the
specified program is not found at the
other LOCAP or (in the extreme case) the
LOCAP name itself is not valid or a
connection cannot be made with the
LOCAP.

PIB-SECURITY

The user running the initiating program
does not have high enough security to
run the requested program or the
requested program is locked due to the
time of day.

PIB-PROG-ABEND

The called program aborted (program
checked) during execution. In this case,
PMDA is called on behalf of the called
program and when PMDA has finished
processing, control returns to the calling
program with this error status.

If the calling program receives PIB-
PROG-ABEND status, the contents of the
CDA are undefined (since PMDA uses
the CDA as a work area).

Calling TIP Utilities

This section describes the procedures that must be followed when a user-
written transaction program calls a utility transaction supplied with the TIP
system.

The transaction programs that are supplied with the TIP system are
written on the assumption that the programs are executed directly from
the TIP command line (there are some minor exceptions to this general
statement).

To successfully call these utilities, it is necessary for the calling program
to carefully arrange the contents of the CDA to contain any needed
parameters in exactly the same format as the data would appear if the
transaction was called from the TIP command line.

In the following examples, it is assumed that the calling program defines
the first 152 bytes of the CDA area using the supplied Copy book TC-
CDA. Although the examples illustrate the use of TIPSUB to call the TIP

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 75

utilities, other methods of transferring control (TIPXCTL, TIPFORK, etc.)
may be used if appropriate.

Example:

To run the standard ―WHOSON‖ TIP utility from the command line, the
user would enter the following:

TIP?►WHOSON

The user-written program calls the transaction in this manner:

MOVE SPACES TO CDA

MOVE "WHOSON" TO PIB-TRID

CALL "TIPSUB"

 IF NOT PIB-GOOD ...

END-IF

TIPSUBP - Call a Subprogram

TIPSUBP provides a way to emulate TIP/30‘s CALL ―TIPSUBP‖, and
IMS/90‘s CALL ―SUBPROG‖ features.

Syntax:

MOVE "????????" TO PIB-TRID

CALL "TIPSUBP" USING parameters

Where:

PIB- TRID
Must be set to the name of the subroutine to be invoked.

TIP/30 supports CALL ―TIPSUBP‖ and IMS/90 supports CALL
―SUBPROG‖. Both of these calls allow transaction programs to call
separately compiled subroutines. TIP/30 loads these subroutines into
memory at system startup. This avoids having to re-compile applications
when the subroutines change and saves memory by loading the
subroutine only once.

A TIP/30 or IMS/90 application moves the subroutine name to PIB-TRID,
then issues CALL ―TIPSUBP‖ USING <parameters>.

On UNIX the appropriate method is to use ―shared libraries‖. On UNIX all
executables are automatically shared and re-compilation time is very fast.
Because of the protected memory spaces on UNIX it is not possible to
jump from one application address space into another so the
implementation of TIPSUBP and SUBPROG under TIP must be quite
different.

TIP Programming Reference

76 Proprietary IP-622

Compile COBOL Subroutines

Compile your COBOL subroutines so that they can be used in a shared
library. For details, see your COBOL vendor‘s documentation.

Add Subroutines to Library

All subroutines that may be invoked via TIPSUBP, must be compiled into
object module format, and added into a normal UNIX archive library
(using the UNIX ar command).

The library should at least hold all the subroutines that would be used by
a particular group of transaction programs.

For details on how to create a shared library, see the documentation for
your UNIX system. Unfortunately, these details tend differ for each
version of UNIX.

Create TIPSUBP or SUBPROG

Once the library is created, use genmain to scan the library and construct
a specific version of TIPSUBP (or SUBPROG) for that library. TIP
modules and IMS modules must be kept in separate libraries:

For TIP:

genmain -S library.a

For IMS:

genmain -iS imslib.a

Where -S is the option to create TIPSUBP (or SUBPROG) and put it into
the specified archive library.

Linking and Executing

The updated library may be used to link (ld) applications, which will
invoke the subroutines via TIPSUBP.

Alternatively, the library could be converted into a shared library and then
used when compiling, linking and executing the transaction programs.

Error Conditions:

Currently, none are returned.

TIPTIMER - Timer Services

This function allows the user program to pause for a specific length of
time. An on line program may choose to delay its execution for a variety
of reasons:

 To wait for an input message from the terminal

 To allow other users of the system access to the processor (to avoid
monopolizing the processor)

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 77

 To wait for a specific number of seconds for some application related
reason.

Syntax:

CALL "TIPTIMER" USING wait-time

 [time-status]

 [preview]

Where:

wait-time
A binary full-word (PIC S9(9) BINARY) that specifies the
number of seconds that the issuing program wishes to
wait. This parameter is required.

 TIP does not modify this field. If appropriate, it may be
coded as a constant in the WORKING-STORAGE section
of a COBOL program.

 The program is reactivated when the specified number of
seconds has elapsed, or an input message is available.

 A value of zero in this field implies that the program does
not wish to delay but is willing to relinquish control of the
processor if some other process in the TIP system is ready
to run.

 Processes that would otherwise monopolize the system
should periodically delay with a WAIT-TIME of zero.
Candidates are processes that perform:
 CPU intensive activities

 Prolonged periods of sequential file reading.

Note: TIP cannot provide TIMER services with accuracy better
than one second. The program is delayed at least the
number of seconds that is specified.

 If wait-time is set to a negative value, the value of the
system parameter TIMEOFF in the tipix.conf file will be
used as the time to wait. Since TIMEOFF is specified in
minutes and TIPTIMER expects a value in seconds TIP
calculates the default wait-time as (TIMEOFF * 60).

 This is useful when a site would like to implement a
standard wait time in their programs. If this technique is
used then the wait time is easily altered by adjusting the
TIMEOFF system parameter. For programs that must
operate on both TIP and TIP/30 the value supplied (to
request the default waittime) must be -1.

 The following technique may be used by programs which
wish to "wake up" at a specific time of day:

TIP Programming Reference

78 Proprietary IP-622

 Obtain the current time of day from the operating system
(the COBOL verb "ACCEPT" is handy for this).

 Compute the number of seconds between the current time
of day and the desired wake up time (taking into account
possible day changes).

 Issue a TIPTIMER call to wait for the computed number of
seconds.

 Be careful not to compare exactly for a specific time of day!
It is better to check for a "greater than or equal to"
condition to avoid missing the exact time.

 Another method for getting scheduled at certain time of
day is to use the TIPQUEUE facility. Define a "queue"
which is to schedule the transaction even if there is no
data in the queue at a certain time of day.

time-status
This parameter is optional and may be omitted if the next
parameter is also omitted.

 A one-byte status code that is set by the TIPTIMER
subroutine to indicate the reason the program was
reactivated. This result status is also returned in the field
PIB-STATUS

PIB-MSG-AVAIL
An input message is available (the requested time
has not elapsed).
 When this status is returned to the program, the

program has an input message available. The
normal course of action is to use one of the TIP
subroutines (example: TIPMSGI, PARAM, etc.)
to read the input message.

 An input message may have been the result of
the terminal user pressing the XMIT key, a
function key or the MSG-WAIT key.

PIB-TIMED-OUT
The specified number of seconds has elapsed and
no input message is available

 The two status codes are mutually exclusive. Only
one of the two possible events can occur.

preview

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 79

 This parameter is an optional 12-byte field into which TIP
places the first 12 bytes (converted to status was
returned). The contents of this field are not defined if
TIPTIMER returns a status of "PIB-TIMED-OUT".

Example:

05 TIMER-WAIT PICTURE S9(9)

 BINARY.

05 TIMER-STATUS PICTURE X.

 ...

 MOVE +60 TO TIMER-WAIT

 CALL "TIPTIMER" USING TIMER-WAIT

 TIMER-STATUS

In this example, TIP suspends execution of the program for approximately
60 seconds or until an input message from the terminal is available.

If a message arrives, TIMER-STATUS contains "M" (PIB-MSG-AVAIL).

Calling TIPTIMER does not cause the TIP system to examine (or alter)
the setting of the PIB-LOCK-INDICATOR.

 Warning: Calling TIPTIMER with a wait time of 60 seconds or less does not cause
the TIP system to release any file system record locks acquired by the
process. This means that a process may delay for up to 60 seconds while
locking records.

If a program that has locked one or more records calls TIPTIMER with a
delay time exceeding 60 seconds, TIP aborts the program with the reason
code: "Resources locked, waiting TIPTIMER".

TIP Programming Reference

80 Proprietary IP-622

TIPUSR - Where is User

This subroutine is called to return the name of the terminal where a
specified TIP user is located. The subroutine searches for the specified
TIP user on the system and returns the terminal name of the first location
where that user is logged on.

Syntax:

CALL ‟TIPUSR‟ USING USER-PKT

Where:

USER-PKT
A group item in the program's work area where the user
name is specified and the terminal name is returned.

The layout of the area is illustrated in the example that follows.

Example:

05 USER-PKT.

 10 USER-NAME PICTURE X(8).

 10 USER-TERM PICTURE X(4).

 ...

 MOVE SPACES TO USER-PKT.

 MOVE ‟ALLINSON‟ TO USER-NAME.

 CALL ‟TIPUSR‟ USING USER-PKT.

 IF USER-TERM = SPACES

 GO TO USER-NOT-ON.

Additional Considerations:

 If the specified user is not found on the system, the terminal name
in the packet is set to spaces.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 81

TIPUSRID - User Information

TIP programs use this call to retrieve information about a specified TIP
user id. Information on the elective groups that the user belongs to and
the comment from the user's TIP definition record are returned.

Syntax:

CALL "TIPUSRID" USING userid-DATA userid userid

Where:

user id-DATA
A group item in the program's work area where the result
information is returned. The layout of the area is illustrated
in the example that follows. The information returned
includes the first two elective groups and comment
information that is in the user's TIP definition.

user id
An eight-character field containing the user id to be used in
the search for information.

Example:

05 userid-DATA.

 10 userid PICTURE X(8).

 10 USER-GRP1 PICTURE X(8).

 10 USER-GRP2 PICTURE X(8).

 10 USER-CMT PICTURE X(30).

...

 MOVE "ALLINSON" TO userid

 CALL "TIPUSRID" USING userid-DATA

 userid

 IF NOT PIB-GOOD

 GO TO USER-DOESNT-EXIST

 END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
The specified user id is not defined. The
result area is cleared to spaces when this
error condition occurs.

 Additional Considerations:

 As shown in the example, the second parameter may safely be
included in the area reserved for the result.

TIP Programming Reference

82 Proprietary IP-622

TIPUSRST – Set new User Information

TIP programs use this call to change the active TIP user id.

Syntax:

CALL "TIPUSRST" USING new-user

Where:

New-user
A group item in the program's work area with the new user-
id and password (if required). The format of the area is
illustrated in the example that follows.

Example:

05 new-user.

 10 user-id PICTURE X(8).

 10 Pass-Word PICTURE X(8).

...

 MOVE "ALLINSON" TO user-id

 MOVE “Secret” TO Pass-Word

 CALL "TIPUSRST" USING new-user

 IF NOT PIB-GOOD

 GO TO USER-DOESNT-EXIST

 END-IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
The specified user id is not defined. The
result area is cleared to spaces when this
error condition occurs.

PIB-SECURITY
The password did not match or the new
userid has higher TIP security that the
current userid.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 83

TIPWINAP - Run a DOS or Windows Program

TIPWINAP has not been implemented in TIP Studio. For the functionality
found with TIPWINAP please use the CreateProcess WIN32 call to start a
"windows application".

This call can only be used with TIP/fe and with MCS running in SMART
mode. After the call, TIP/fe will start up the desired program. If TIP/fe for
Windows is being used, the program will run asynchronously to TIP/fe.

Syntax:

CALL "TIPWINAP" USING cmdline

Where:

Cmdline
Specifies the name of the DOS/Windows program to run.
This buffer must be 80 bytes long.

When running the DOS version of TIP/fe, a program will be started up
only if enough memory is available. Windows TIP/fe will not run DOS
.com programs.

TIPWINAP will use the DOS PATH environment variable to find the
executable to run if no path is specified.

Example:

MOVE 'ff c:\config.sys' TO COMMANDLINE

CALL 'TIPWINAP' USING COMMANDLINE

If 'ff' is in the path, it will be found and executed.

TIP Programming Reference

84 Proprietary IP-622

TIPXCTL - Transfer Control

The TIPXCTL subroutine transfers control to another program on the
same program stack level - once the transfer of control is complete, the
calling program terminates (control will not automatically return).

The contents of the CDA of the calling program are copied to the CDA of
the called program, to serve as the called program's initial CDA contents.

The calling program's CDA data is copied to the CDA of the next program
for a length, which is the least of:

 The size of the calling program's CDA area

 The size of the called program's CDA area

 The value specified by the calling program in the field PIB-CDA-
LENGTH.

The calling program must move the name of the transaction to receive
control to the PIB-TRID field and then call TIPXCTL.

Syntax:

 [MOVE ? TO PIB-CDA-LENGTH]

 MOVE "????????" TO PIB-TRID

 CALL "TIPXCTL"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being invoked

PIB-TRID
Must be set to the transaction name of the program to
which control is to be transferred

Example:

MOVE ... TO CDA

MOVE "NXTSTP" TO PIB-TRID

CALL "TIPXCTL"

PERFORM ERR-ON-XCTL

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-FOUND

The program is not defined, or the load
module could not be loaded, or the field PIB-
TID was erroneously modified by the program
prior to calling TIPXCTL.

If you receive bad status and want a more

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 85

 PIB-STATUS Meaning

detailed description, use PIB-DETAIL-
STATUS. See PIB-DETAIL-STATUS in PIB
Process Information Block on page 20.

PIB-SECURITY

The user running the initiating program does
not have a high enough security to run the
requested program or the transaction is
locked at this time of day.

Example:

An example of the use of TIPXCTL is to provide a means for a transaction
program to offer the user the ability to both exit the transaction and logoff
the TIP system.

To accomplish this, the program includes code such as this:

MOVE SPACES TO CDA

MOVE "LOGOFF" TO PIB-TRID

CALL "TIPXCTL"

CALL "TIPERASE"

MOVE "UNABLE TO LOGOFF" TO ERROR-TEXT

CALL "ROLL" USING ERROR-TEXT

CALL "TIPRTN"

Hint:

 The code illustrated above does not need to check whether or not the
transfer of control to the LOGOFF transaction was completed (if the
TIPXCTL failed for any reason, the program is given control back after
the TIPXCTL).

The LOGOFF program will refuse to perform its function unless LOGOFF
is called at stack level 1. LOGOFF is not permitted if the program stack is
not empty.

TIP Programming Reference

86 Proprietary IP-622

Message Control System (MCS)

This chapter describes the facilities provided by TIP to enable an online
program to perform input and output operations at a terminal.

Provided Interfaces

Three levels of interface are provided:

Interface Description

Message Control
 System (MCS)

MCS is a high level interface; that is, it
allows application programmers to
develop screen formats (templates) and
use them in online programs.
 Using MCS, the programmer can
achieve a high degree of hardware
independence.

Line-Oriented
 Input/Output

The Line-oriented I/O interface consists
of a number of subroutines, which
facilitate the interactive use of the
terminal in a line-by-line fashion.
 A program using these subroutines
issues one line prompts and retrieves
single line replies.

Direct
Communications
Input/Output (DCIO)

The DCIO interface allows the program to
exercise direct control over the activity of
the terminal. This is a low level interface
that requires the application programmer
to supply the control codes that are to be
sent to the terminal.

The DCIO interface is primarily intended
for unusual applications that require
direct control of the terminal. It is
intended for use only when the facilities
of the higher level interfaces (MCS or
Line-Oriented I/O) cannot achieve the
desired results.

Terminal Paging

TIP provides paging, an efficient way to
save screens (pages) into a file, and
access them. Each page contains all the
information necessary to repaint a full
screen including the data.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 87

MCS Screen Formats

The TIP Message Control System provides the capability to create, test
and use screen formats (templates) in online programs. These screen
formats are unique because they are not defined in the programs that use
them. The user program sends and receives only data field information to
and from the terminal.

The MCS System handles all communications codes and heading
information. There are four major components of MCS; three are online
utility transaction programs:

Utility Description

TFD
Utility transaction to define and update
screen formats.

MSGSHOW
Utility transaction to test screen
formats.

MSGAR
Utility transaction that provides librarian
services for screen formats.

The fourth component of MCS is the Message Formatter:

MSGFMT
The message formatter an internal part of TIP that
provides an interface between the formats and the data
supplied by the program. MSGFMT is the TIP format
handler.

 For output operations, it merges user data supplied in the
MCS interface packet, with the information in the screen
format and sends it to a terminal.

 For input operations, MSGFMT extracts the data from the
incoming communications message and stores it in the
MCS interface packet.

MCS Interface Packet

The layout of the data area of the MCS interface packet is similar to that
of a fixed-length data record. There is no provision for tab stops or cursor
coordinates; such items are defined in the screen format by TFD and
handled completely by MSGFMT at user program execution time.

Optimization of Output Messages

The Message Formatter optimizes all output messages. For example, in
the interest of efficiency, a series of blanks may be replaced with a cursor
positioning code sequence.

TIP Programming Reference

88 Proprietary IP-622

Common Carrier Lines

MCS optimization can make a significant improvement in communication
throughput; especially over low speed Common Carrier lines.

Other Advantages

Any online program may call any defined format using its assigned eight-
character name. Furthermore, the programmer may change heading
information in screen formats without changing the programs that use
them. User programs only process the data since the Message Formatter
in TIP handles all communications control characters and heading
information.

These features greatly reduce the programming effort and development
time required to put online programs into production.

How Screen Formats Work

The following diagrams illustrate the relationship between the program
and the TIP screen format. Further information about how a screen format
is defined may be found in the description of the utility transaction TFD
(TIP Format Definition).

Assume that a screen format has been defined as follows:

 ACME WIDGET COMPANY

 Name: UUUUUUUUUUUUUUUUUUUUUUUUU

Address: UUUUUUUUUUUUUUUUUUUUUUUUU

 UUUUUUUUUUUUUUUUUUUUUUUUU

 UUUUUUUUUUUUUUUUUUUUUUUUU

Balance: -ZZZ,ZZZ,ZZ9.99

EE

The first line is heading information; the strings of "U" characters define
uppercase data fields; the "Balance" field is a numeric field with a floating
and leading negative sign and floating zero suppression. The string of "E"
characters defines an "error" field that may be used by a program to
output informational or error messages.

When the facilities of MCS are used by an online program, the program
only defines the data fields that correspond to the data fields defined in
the screen format. For example, referring to the screen format show
above, the program might define 5 fields this way (error fields are not
considered data fields in this context and are handled separately):

05 S-NAME PICTURE X(25).

05 S-ADDR-1 PICTURE X(25).

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 89

05 S-ADDR-2 PICTURE X(25).

05 S-ADDR-3 PICTURE X(25).

05 S-BALANCE PICTURE S9(9)V99.

The program deals with the data fields - the heading information and the
automatic output editing capabilities of the screen handler are transparent
to the user program.

To output data for example, a program moves the desired data to the
appropriate fields and calls the TIP MCS subroutine "TIPMSGO" to output
the screen format and the data supplied by the program.

Conversely, a call to the TIP MCS subroutine "TIPMSGI" causes data

from the screen to be placed in the program's data fields the program
does not need to be concerned with the mechanics of the terminal
operation or the communication sub-system.

MCS Subroutines

An online TIP program uses TIP screen formats by issuing subroutine
calls to the TIP Message Control System to transfer data to and from the
terminal. The subroutines are summarized as follows:

Subroutine Description

TIPASK

May display a one line question and returns a
one-line answer from the user to the application
program. Pops up a small window with the
question and answers fields and then removes
the window when the answer is given.

TIPASKYN
Similar to TIPASK except that only a single
character reply ("Y" or "N") is accepted.

TIPERASE
Erase screen. Also removes all windows
pushed onto the stack.

TIPLIST
Use to invoke help text processing from within
an application program.

TIPMENU Define an 80-byte menu bar.

TIPMSGE Send "error" message to terminal.

TIPMSGEO Define a deferred error message.

TIPMSGI Input data from terminal.

TIPMSGO Output data to terminal.

TIPMSGOV Display an MCS screen format and overlay the

TIP Programming Reference

90 Proprietary IP-622

Subroutine Description

current screen.

TIPMSGPR
Outputs an MCS screen format logical contents
(headings and data) as print lines to TIPPRINT
(TIP printing interface).

TIPMSGRS
Pops the current screen off and restores the
contents previously (immediately) displayed.

TIPMSGRV Force read terminal screen.

TIPTITLE
Define an 80-byte screen title bar.

All of these subroutines are described in subsequent sections. The
following section describes the interface packet that these subroutines
use to control the action of the subroutine.

Program Control after CALL

The online program issues CALLs to these subroutines and receives
control directly following the CALL to the subroutine.

This means that online programs can transfer data to and from the
terminal in much the same manner as a batch program transfers data to
and from a disk file (for example).

The MCS interface provides hardware independence by requiring the
program to handle only the data fields.

Using Screen Formats

The following code fragment illustrates the general structure of a TIP
program that uses screen formats. Do not interpret the following code
literally - use it to conceptualize the general structure.

Example:

SEND-OUTPUT.

 CALL "TIPMSGO" USING ...

GET-INPUT.

 CALL "TIPMSGI" USING ...

 IF USER-REQUESTED-EXIT

 GO TO END-PROGRAM

 ELSE

 --evaluate input data--

 END-IF

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 91

 IF ANY-ERRORS-DETECTED

 MOVE ERROR TEXT TO ERROR-MESSAGE-TEXT

 CALL "TIPMSGE" USING ...

 GO TO GET-INPUT

 --update information on file etc.--

 END-IF

 GO TO SEND-OUTPUT

This program fragment is intentionally not structured the way code usually
is; it merely illustrates that the "flow" of an online program can be quite
straightforward and need not involve programming concepts that differ
radically from batch programming.

Sample Program tstwin

The TIP release includes the COBOL source for a TIP demonstration
program named tstwin.cbl. The tstwin program illustrates how to use the
new windowing features of TIP, that are supported by the MCS facility.

MCS Interface Packet

TC-MCS copybook

The COBOL copybook TC-MCS in the TIP library defines the MCS
interface packet. The MCS interface packet controls the interface
between an online program and the TIP Message Control System. The
Message Control System assumes that this interface packet immediately
precedes the fields that contain the data for the screen format that is in
use.

*

* TIP - MESSAGE CONTROL SYSTEM PACKET

*

 02 MCS-NAME PICTURE X(8).

 02 MCS-TERM PICTURE X(4).

 02 MCS-FUNCTION PICTURE X.

 88 MCS-SEND-FULL VALUE " ".

 88 MCS-RECEIVE-ALL VALUE "A".

 88 MCS-DATA-ONLY VALUE "D".

 88 MCS-UNSOLICITED VALUE "M".

 88 MCS-SCREEN-PRINT VALUE "P".

 88 MCS-REFRESH VALUE "R".

 88 MCS-SHORT-XMIT VALUE "S".

 02 MCS-HOLD PICTURE X.

 88 MCS-KEYBOARD-LOCK VALUE "L".

 02 MCS-SIZE PICTURE S9(4) COMP-4.

 02 MCS-STATUS PICTURE X.

 88 MCS-GOOD VALUE " ".

 88 MCS-XMIT VALUE " ".

 88 MCS-MSG-WAIT VALUE "0".

 88 MCS-FKEY1 VALUE "1".

 88 MCS-FKEY2 VALUE "2".

TIP Programming Reference

92 Proprietary IP-622

 88 MCS-FKEY3 VALUE "3".

 88 MCS-FKEY4 VALUE "4".

 88 MCS-FKEY5 VALUE "5".

 88 MCS-FKEY6 VALUE "6".

 88 MCS-FKEY7 VALUE "7".

 88 MCS-FKEY8 VALUE "8".

 88 MCS-FKEY9 VALUE "9".

 88 MCS-FKEY10 VALUE "A".

 88 MCS-FKEY11 VALUE "B".

 88 MCS-FKEY12 VALUE "C".

 88 MCS-FKEY13 VALUE "D".

 88 MCS-FKEY14 VALUE "E".

 88 MCS-FKEY15 VALUE "F".

 88 MCS-FKEY16 VALUE "G".

 88 MCS-FKEY17 VALUE "H".

 88 MCS-FKEY18 VALUE "I".

 88 MCS-FKEY19 VALUE "J".

 88 MCS-FKEY20 VALUE "K".

 88 MCS-FKEY21 VALUE "L".

 88 MCS-FKEY22 VALUE "M".

 88 MCS-FPOC VALUE "N".

 88 MCS-TIMED-OUT VALUE "T".

 88 MCS-F-REBUILD VALUE "1" "5" "N".

 88 MCS-F-NEXT VALUE "2" "6".

 88 MCS-F-UPDATE VALUE "4" "8".

 88 MCS-F-FIELD VALUE "<".

 88 MCS-F-MENU VALUE ">".

 02 MCS-FILLER PICTURE X.

 88 MCS-UNDERLINE VALUE "_".

 88 MCS-ASTERISK VALUE "*".

 88 MCS-SPACE VALUE " ".

 02 MCS-COUNT PICTURE S9(4) COMP-4.

/

 02 MCS-DATA.

*

* USER SUPPLIED RECORD LAYOUT FOR MCS SCREEN FOLLOWS

If an online program uses more than one screen format, the program
redefines the MCS-DATA area to account for the differing layouts of the
screen formats.

An online program interfaces with MCS through subroutine calls that
transfer data to and from the terminal. These subroutines use the
information placed in the interface packet.

The following is a description of the fields that make up the MCS packet

MCS-NAME
A field that must contain the desired screen format name.

 Screen formats are assigned a name when they are
defined using the TFD program. The format name may be
up to eight characters in length and must start with a
character that is not a digit.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 93

 If the field MCS-NAME contains underscore character(s),
MCS replaces underscores with the user's LANGUAGE=
code (as specified in the USER definition record), and
attempts to find that screen format. If the user does not
have a language code assigned, underscores are replaced
with the letter "A".

MCS-TERM
This field is used to specify the intended destination of an
output message (if it is different than the terminal that is
issuing the call to the MCS subroutine).

 If this field does not contain a valid terminal name (namely:
spaces or low values), the screen format I/O is directed to
the terminal where the program is running.

 If the specified terminal is not currently connected to TIP
the terminal name is ignored

MCS-FUNCTION
This field specifies additional optional processing. Each
MCS subroutine description includes a discussion of the
relevant values of this field.

MCS-HOLD
This field may be set to the value "L" before calling
TIPMSGO to lock the terminal keyboard following delivery
of the output message.

 The contents of this field are not preserved - the program
must insert the desired value before issuing a call to MCS

MCS-SIZE

 MCS sets this field to the maximum number of bytes that
may have been received as a result of an input message.
The online program can use this value to determine
whether the data received on an input message represents
a "full screen". This is discussed in the description of the
TIPMSGI subroutine call.

 The online program should not modify this field.

 This field is set to the appropriate value after a call to an
MCS subroutine (for example, TIPMSGI).

MCS-STATUS
MCS sets this field after a call to request terminal input.
The value indicates what type of terminal activity was
detected: for example, MSG WAIT or a function key or
XMIT. Various 88 level items are provided to simplify
program coding.

TIP Programming Reference

94 Proprietary IP-622

 After an output message (TIPMSGO or TIPMSGE), if an
input message is already available this field is set to the
value "M".

 The special status code MCS-F-FIELD indicates that
control was returned to the application because of field
level input. A field, for which the application had requested
field level input, was changed and then exited.

 The special status code MCS-F-MENU indicates that
control was returned to the application because the user
selected an item from the on-screen menu bar (see the
documentation for the subroutine TIPMENU).

MCS-FILLER
This field is set to the desired "fill" character to use on
output. Choices are: space, underscore or asterisk
character.

 During TIPMSGO, the fill character is used to replace:

 leading spaces in unprotected numeric fields (caused by
zero suppression)

 trailing spaces in unprotected alphanumeric fields

 Fill characters are not used in protected data fields. Fill
characters received from the terminal during TIPMSGI are
replaced by spaces or zeroes depending on the field type.

 This field is not modified by MCS

MCS-COUNT
The TIPMSGO subroutine expects this field to contain a
count of the number of data bytes in the MCS-DATA area
that are output to the screen format.

 If this value is less than the maximum number of data field
bytes in the format, the MCS formatter uses the MCS-
FILLER character in data fields, which follow the fields
implied by the count.

 If greater, any excess (trailing) bytes are ignored.

 When terminal input is received, the value in this field
indicates the number of data characters received:

 The input count is always less than or equal to the value
that MCS reports in the MCS-SIZE field (the maximum)
and always includes the full size of the last field where the
cursor was resting.

 For example, if the terminal operator enters a partial value
in a long field and presses XMIT somewhere within that
field, the value in MCS-COUNT will be adjusted upward to

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 95

include the full length of that field. The field itself in the
MCS-DATA area will be padded on the right with the
appropriate character depending on the type of field
(numeric or alphanumeric).

MCS-DATA
This group item defines the start of the data fields that are
defined in the screen format.

 The elementary fields in this group item must be defined by
the programmer in the same order as they appear in the
screen format (top to bottom and left to right). The type and
size (in bytes) of the elementary fields must also match the
definition of the field that was specified when the screen
format was defined.

 Define the fields in this group item as display type fields
packed, binary or floating point fields are not permitted.

 Use the COBOL command provided by the MSGAR online
utility program to create a library element containing the
field layout corresponding to a screen format. This library
element can then be tailored and placed following the
MCS-DATA group item

MCS Subroutine CALLS

TIPASK - Display One Line and Return Answer

TIPASK displays a one-line question and then returns the one line answer
from the user to the application program. TIPASK is like PROMPT but it
pops up a small window with the question and answer fields and then
removes the window when the answer is given. The original screen
contents are preserved and restored when the TIPASK window is
cleared.

To use this MCS routine from TIP/as your program must be defined as a
TIP/ix program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPASK" USING reply-text

 question-text

TIP Programming Reference

96 Proprietary IP-622

Where:

reply-text
The result field TIPASK places the user's reply (max of 80
characters) in this field.

 The contents of the reply field are displayed on the screen
as the initial data in the answer field (if you do not want
anything displayed as a default response, move SPACES
to the reply field before issuing the CALL).

question-text
A field (maximum 80 bytes) containing the text of the
question to ask.

Example:

WORKING-STORAGE SECTION.

....

05 QUESTION PICTURE X(80)

 VALUE "Please supply your company name".

.....

LINKAGE SECTION.

01 WORK-AREA.

 05 REPLY-TEXT PICTURE X(80).

.....

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

....

 CALL "TIPASK" USING REPLY-TEXT

 QUESTION

Additional Considerations:

If possible, the "ask" window is positioned near the field where the cursor
is located.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 97

Example of TIPASK Window Prompt:

TIPASKYN - Display One Line and Return Answer

TIPASKYN is similar to TIPASK except that only a single character reply
is accepted.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPASKYN" USING reply-text

 question-text

Where:

reply-text
The result field TIPASKYN places the user's reply (max 1
character) in this field.

question-text
A field (maximum 80 bytes) containing the text of the
question to ask. The text of the question should provide a
clue as to the single character replies that are acceptable

TIP Programming Reference

98 Proprietary IP-622

Additional Considerations:

 For TIPASKYN the contents of the reply field are displayed on the
screen as the initial data in the answer field. If you do not want
anything displayed move SPACES to the reply field before the CALL.

 If possible, the "ask" window is positioned near the field where the
cursor is located.

Example:

WORKING-STORAGE SECTION.

05 OK-DEL PICTURE X(80)

 VALUE "Ok to delete this record? (Y/N)"

LINKAGE SECTION.

01 WORK-AREA.

 05 RESPONSE PICTURE X.

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

 MOVE "N" TO RESPONSE

 CALL "TIPASKYN" USING RESPONSE

 OK-DEL

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 99

Example of TIPASKYN Window Prompt:

TIPERASE - Erase Screen

The TIPERASE subroutine erases the terminal screen. The program may
want to make this function part of the processing that occurs when the
program terminates. If any overlay screens were on the screen (placed
there by calls to TIPMSGOV), they will be removed too.

Syntax:

CALL "TIPERASE"

Additional Considerations:

The entire screen is erased. Protected and unprotected data and heading
information is removed.

Example:

...

CALL "TIPMSGI" USING MCS

IF MCS-FKEY4

 CALL "TIPERASE"

 CALL "TIPRTN"

END-IF

TIP Programming Reference

100 Proprietary IP-622

The above example illustrates a technique to detect function key F4 and
erase the screen before exiting the program.

TIPLIST - Pick From a List

The TIPLIST subroutine can be used to display help text that is externally
defined in the associated screen format or to display application-supplied
data in a list format. Displayed data can be selected by the terminal user
and XMIT pressed to notify the application which line item is selected.

The list may include headings, comments for each item, scroll bars (for
lists larger than life), and hot keys for rapid selection.

There are three versions of syntax for this subroutine.

Note that to create a list larger than 99 rows or 5000 bytes in total you
must use Syntax 3, which has no limit.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax 1 (2 parameters):

CALL "TIPLIST" USING help-name

 sel-text

Where:

help-name
The first parameter holds the name (PIC X(8)) of externally
defined help text that you wish to be displayed. The help
text must have been defined at the time the screen format
was created with TFD.

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered. This field must be defined as
X(80).

Example:

WORKING-STORAGE SECTION.

 ...

 05 HELP-NAME PICTURE X(8)

 VALUE "APPLHELP".

 ...

LINKAGE SECTION.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 101

01 WORK-AREA.

 05 SEL-TEXT PICTURE X(80).

 ...

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

 ...

 CALL "TIPLIST" USING HELP-NAME

 SEL-TEXT

Syntax 2 (3 parameters):

CALL "TIPLIST" USING help-size

 sel-text

 list-data

Where:

help-size
The first parameter (PIC x(8)) contains two 2-digit fields
that declare (respectively) the number of fields and size, in
bytes, of each field passed as the third parameter

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text. This field must
be defined as X(80).

list-data
The third parameter defines the list data (the number of
lines and the size of each line as specified in the HELP-
SIZE parameter above.)

 The first capitalized letter in the text is considered a "hot
key" character at run-time so that the user can quickly
move to that line by pressing the "hot key" instead of
scrolling through the list.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered.

Example:

 05 HELP-SIZE PICTURE X(8)

 VALUE "0635".

 05 LIST-DATA.

TIP Programming Reference

102 Proprietary IP-622

 10 DAT-LINE PICTURE X(35)

 OCCURS 6 TIMES.

 05 SEL-TEXT PICTURE X(80).

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

 CALL "TIPLIST" USING HELP-SIZE

 SEL-TEXT

 LIST-DATA

Using TIPLIST with application-supplied data allows you to collect
information and present it to the end user as a list. The end user may
then select some item from the list and respond by pressing XMIT or a
function key. The application could then update, delete, add or display
more detailed information on the item selected.

Example of TIPLIST in action:

In the second format of the call to TIPLIST (with three parameters), the
first line of data may contain keywords that are used to specify the
position of the list and special processing. The order of the keywords is
not significant:

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 103

Syntax 3 (4 parameters):

CALL "TIPLIST" USING rows

 Cols

 sel-text

 list-data

Where:

rows
Lets you select the number of rows that appear in a list.

cols
Lets you select the number of columns that appear in a list.

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text. This field must
be defined as X(80).

list-data
The fourth parameter defines the list data (the number of
lines (rows) and the size of each line (cols) as specified in
the parameters above.)

 The first capitalized letter in the text is considered a "hot
key" character at run-time so that the user can quickly
move to that line by pressing the "hot key" instead of
scrolling through the list.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered.

Example:

 ...

WORKING-STORAGE SECTION.

 ...

01 HELP-SIZE PICTURE X(8)

 VALUE '0506 '.

 ...

01 LIST-DATA.

 10 FILLER PICTURE X(50)

 VALUE 'HEADCHAR=$,CMTCHAR=*,STYLE=LIST,POS=10,38'.

 10 FILLER PICTURE X(50)

 VALUE '$This is a Header'.

 10 FILLER PICTURE X(50)

 VALUE 'LINE 2'.

 10 FILLER PICTURE X(50)

 VALUE '*This is a comment.'.

 10 FILLER PICTURE X(50)

 VALUE 'LINE 4'.

 10 FILLER PICTURE X(50)

 VALUE '*You may put comments here.'.

TIP Programming Reference

104 Proprietary IP-622

 10 FILLER PICTURE X(50)

 VALUE 'LINE 6'.

 10 FILLER PICTURE X(50)

 VALUE '*Please press Return.'

 ...

 01 WORK-AREA.

 05 ROWS PICTURE 9(8) BINARY.

 05 COLS PICTURE 9(8) BINARY.

 05 SEL-TEXT PICTURE X(80).

 ...

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

0000-INITIALIZATION.

 MOVE 8 TO ROWS.

 MOVE 50 TO COLS.

 CALL 'TIPLIST' USING ROWS

 COLS

 SEL-TEXT

 LIST-DATA.

 CALL 'ROLL' USING SEL-TEXT.

 CALL "TIPRTN".

Using TIPLIST with application-supplied data allows you to collect
information and present it to the end user as a list. The end user may
then select some item from the list and respond by pressing XMIT or a
function key. The application could then update, delete, add or display
more detailed information on the item selected. Using ROW and COLS
you may control the size of your list or menu.

This is an example of a TIPLIST generated list:

*** missing picture ****

Options associated with TIPLIST:

HEADCHAR=x,CMTCHAR=x,LINES=nn,STYLE=xxxx,

 POS=r,c, SELECT={YES|NO|AUTO}

Syntax:

05 FILLER PICTURE X(50)

 VALUE "CMTCHAR=*,LINES=03,STYLE=MENU,POS=14,15".

Where:

HEADCHAR=x
This keyword specifies the single character that is to be
considered a marker for initial lines of data that are to be
treated as headings for the list. The initial lines of data that
begin with this character are used to construct a heading
or title box for the list.
 Default heading character is "!"

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 105

CMTCHAR=x
This keyword specifies the single character that is to be
considered a marker for a comment line. A comment line
may follow a data line in the list data. Comments are
displayed in a box at the bottom of the list when the cursor
rests on a particular list item.
 Default heading character is "#"

LINES=nn
This keyword specifies the number of lines of data to be
presented in the list (if there are more items, a scrolling bar
is also displayed.) The value specified must be between 2
and 20 inclusive; a value less than 2 is set to 2, values
greater than 20 are set to 20.
 If this keyword is omitted or is not conformable with the
POS= keyword, MCS selects a number of lines that is
dependent on the position of the list on the screen.

STYLE=xxxx
This keyword specifies the style desired for the list:
STYLE=LIST or STYLE=MENU
 If this keyword is omitted, the LIST style is used.

POS=r,c
This keyword specifies the row number (r) and the column
number (c) where the upper left corner of the list is to be
placed. The list is placed as close as possible to the
specified location.
 If this keyword is omitted, the list is placed as close as
possible to the cursor location without obscuring the field
where the cursor is resting.

SELECT=

YES The user must explicitly press ENTER or XMIT to
select an item. This is the default.

 NO Do not allow user to select an item. The user can
only use ESCAPE or MSG WAIT to exit the
TIPLIST.

 AUTO
Automatically select an item (as if ENTER or XMIT
were pressed) when the first or capitalized letter is
typed (if it is unique).

Example of a List with heading and comments

01 IN-HELP2 PICTURE X(8) VALUE "1330".

01 IN-TEXT2.

 05 FILLER PICTURE X(30)

 VALUE "!What is your sport?".

 05 FILLER PICTURE X(30)

 VALUE " Golf ".

 05 FILLER PICTURE X(30)

 VALUE "# Relaxing? ".

TIP Programming Reference

106 Proprietary IP-622

 05 FILLER PICTURE X(30

 VALUE " Baseball ".

 05 FILLER PICTURE X(30

 VALUE "# Go Blue jays ".

 05 FILLER PICTURE X(30

 VALUE " Racquet ball ".

 05 FILLER PICTURE X(30

 VALUE "# Smack it hard".

 05 FILLER PICTURE X(30

 VALUE " Mud wrestling ".

 05 FILLER PICTURE X(30

 VALUE "# Male or female".

 05 FILLER PICTURE X(30

 VALUE " Skinning bears".

 05 FILLER PICTURE X(30

 VALUE "# Sandy's favorite".

 05 FILLER PICTURE X(30

 VALUE " Quaffing beer ".

 05 FILLER PICTURE X(30

 VALUE "# Barry's favorite".

This coding appears in the TIP sample program tstwin. The list coded
above is displayed as follows:

The cursor is resting on the selection "Golf" and the corresponding
comment line "Relaxing?" appears in the comment box at the bottom of
the list. As the user moves up or down through the list, the comment
changes to reflect which item is currently in focus.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 107

TIPMENU - Display Menu Bar

The call TIPMENU displays a "LOTUS 1-2-3 style" 80-character menu bar
containing specific keywords that the terminal user can later select to
perform specific actions. The menu bar is displayed on the top line of the
screen unless a prior call to TIPTITLE has used line 1 (in that case, the
MENU line appears on line 2.)

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPMENU" USING menu-text

Where:

menu-text
The first parameter is an alphanumeric field containing the
menu choices that are to be offered to the terminal user on
the menu bar. This field defines an area of exactly 80
bytes; each 10-byte subfield can be used as a menu
choice. The following example shows how menu text is
constructed:

01 MENU1.

 05 FILLER PIC X(10) VALUE "Display ".

 05 FILLER PIC X(10) VALUE "Update ".

 05 FILLER PIC X(10) VALUE "Cancel ".

 05 FILLER PIC X(10) VALUE "End ".

 05 FILLER PIC X(10) VALUE "Quit ".

 05 FILLER PIC X(10) VALUE "Home ".

 05 FILLER PIC X(20) VALUE " Pick one and Enter".

 01 FILLER REDEFINES MENU1.

 05 MENU-ITEM OCCURS 8 PIC X(10).

Note: The first subfield (or group of 10 bytes) that contains a
leading space character is considered the end of the
choices. In the above example, there are 6 choices; the
text "Pick one and Enter" is merely placed as a comment
at the end of the menu bar.

Additional Considerations:

 This call only displays the menu bar on the screen. To select an item
from the menu bar, the user must press the keyboard key that is
assigned to the functionality "go to menu bar". See the definition of
keyboard mapping in ―TIP Installation and Operation‖ under the
heading "Terminal Interface" for additional information. The default
key to enter the menu bar is CTRL-\. Once the user enters the menu

TIP Programming Reference

108 Proprietary IP-622

bar, a menu item can be selected and XMIT can be pressed. When
the menu item is selected and XMIT is pressed, the status code MCS-
F-MENU is set and the program returns from TIPMSGI and can take
whatever action is appropriate.

 The selected item is returned in PIB-MCS-FIELD as an item number.

TIPMSGE - Send Error Text To Screen

After a call to TIPMSGI, the program normally validates the data received
from the terminal.

Programs can use the TIPMSGE subroutine call to:

 output an error (or informational) message

 indicate data fields that contain questionable values

 inform the terminal user that the input was not acceptable.

The TIPMSGE subroutine can accomplish two different objectives:

 Deliver error message text to the screen format.

 Identify data fields that are not acceptable to the program.

To deliver error message text, the program passes a parameter that
defines a string of error text. The TIPMSGE subroutine retrieves from this
location a number of bytes of character data the length of which
corresponds to the sum of all "EEEEE" fields in the screen format
definition.

 Note: Although commonly referred to as an "error" message, the text could be a
purely informational message, such as: "Searching File - Please Wait"

To highlight data fields that are in error, the program may move HIGH-
VALUES (hexadecimal FF) to a field or fields in the MCS-DATA area
before calling the TIPMSGE subroutine. The TIPMSGE subroutine uses
the value in MCS-COUNT to determine how far to search the MCS-DATA
area for any fields containing HIGH-VALUES. Normally this count has
been set by the prior call to TIPMSGI.

TIPMSGE causes such flagged fields to "blink". If data fields in the screen
format are "blinked", TIPMSGE leaves the cursor in the first character of
the first field that is in "error". If no fields are blinked, the cursor remains in
the cursor resting location defined for the screen format.

The TIPMSGE subroutine examines the field "MCS-FUNCTION". If this
field contains the character "R", the TIPMSGE subroutine first "refreshes"
all the data fields in the screen format. The refresh operation is
accomplished by resending all of the FCC attributes to the fields (on
terminals that use FCC). This effectively "unblinks" any fields that are
already blinking before causing new fields to blink.

Set MCS-FUNCTION to "R" only when there are consecutive calls to
TIPMSGE, so that the terminal operator won't have to guess which fields

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 109

are currently blinking (as opposed to those blinking due to prior calls to
TIPMSGE).

Set MCS-FUNCTION to "M" to cause the terminal to beep.

Syntax:

CALL "TIPMSGE" USING MCS

 Text

 [fcc-mods]

 [cursor-mods]

Where:

MCS The MCS interface packet (previously described).

text The name of an elementary field or group item that
contains the "error" text to be used to fill the type "EEEE"
fields in the screen format.
The TIPMSGE subroutine copies characters from this field
until it fills all error fields ("EEEE") in the screen format.
For example, if the screen format contained two error
fields: one of 20 characters, another of 70, TIPMSGE
expects 90 characters (20+70) in this field.

fcc-mods
Optional table of two byte entries (two bytes per field) used
in modification of FCC (Field Control Character) attributes
of each data field.

 See FCC Modifications on page 122 for details.

cursor-mods
Optional table of one-byte entries (one byte per field) uses
in specifying the field where the cursor is to rest after the
call to TIPMSGE.

 See Cursor Positioning on page 126 for details.

Example:

05 ERROR-TEXT PICTURE X(30).

 ...

 ...

PERFORM GET-INPUT-MSG.

 ...

IF SCREEN-ACCT-NUMBER < "A0000"

 MOVE HIGH-VALUES TO S-ACCT-NUMB

 MOVE "INVALID ACCOUNT NUMBER"

 TO ERROR-TEXT

 CALL "TIPMSGE" USING MCS

 ERROR-TEXT

TIP Programming Reference

110 Proprietary IP-622

END-IF

Additional Considerations:

 TIP sets MCS-COUNT to zero after a call to the TIPMSGE subroutine.
It is not possible to avoid specifying FCC-MODS if the CURSOR-
MODS parameter is specified.

TIPMSGEO - Define Deferred Error Text

Use the TIPMSGEO subroutine to "define" error message text to MCS.
This error text is not acted upon immediately but is "remembered" by
MCS and is appended to the end of the next output to the terminal by
TIPMSGO.

TIPMSGEO does not actually send any data to the terminal; it is a
mechanism that allows the program to issue a TIPMSGE in anticipation of
a subsequent TIPMSGO. This technique saves the double transmission
that often occurs when a program issues a TIPMSGO immediately
followed by a TIPMSGE.

Syntax:

CALL "TIPMSGEO" USING text

Where:

text The elementary or group item field name that contains the
"error" text that is "remembered" during the next call to the
TIPMSGO subroutine.

 Make the TEXT area as large as the sum of the sizes of all
error fields ("EEEE") in the screen format

Additional Considerations:

 MCS saves the data in the TEXT area and uses this text only on the
next call to TIPMSGO. Whatever text is in the TEXT area when the
TIPMSGO occurs is the data that is sent to the "E" fields.

 A common programming "trick" is to move error text to a work field
whenever an error is detected in the input from the terminal. The
paragraph that outputs data to the screen calls TIPMSGO and then
conditionally calls TIPMSGE if the work field does not contain spaces.
This results in two consecutive outputs to the terminal.

 Using TIPMSGEO instead effectively merges the two outputs into a
single transmission.

TIPMSGI - Read Data from Screen Format

Online programs issue a call to the TIPMSGI subroutine to request
terminal input. The use of TIPMSGI presumes that a TIP screen format

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 111

has already been used to send output to the terminal. This call is used at
points in the online program where input is required from the terminal, for
example, after a CALL to TIPMSGO or TIPMSGE.

Syntax:

CALL "TIPMSGI" USING MCS [fld-ctrl]

Where:

MCS
The MCS interface packet. Before issuing a call to
TIPMSGI, your application must ensure that the MCS
interface packet contains appropriate values in a number
of the fields.

fld-ctrl
Optional second parameter. A cursor control array.

 Each entry in the array is a single byte corresponding to a
field of the MCS format and permits field level control.

 Place an "X" in this field to have control return to the
program when the field has changed and the cursor is
leaving the field;

 Place an "L" in this field to have control return to the
program when the cursor is leaving the field (whether or
not the field changed);

 Place an "E" in this field to have control return to the
program when the field is entered.

 The MCS-STATUS status will be MCS-F-FIELD and the
MCS-COUNT will be set to include the field just exited. The
PIB-MCS-FIELD value will also be the field number just
exited.

Before calling TIPMSGI, your application must ensure that the MCS
interface packet contains appropriate values in these fields:

MCS-NAME
The program normally specifies the same screen format
name in the field "MCS-NAME" for related output and input
functions

MCS-FUNCTION
MCS-FUNCTION may be set to a space or the value "A". A
space indicates no special input processing is required.
Setting MCS-FUNCTION to "A" requests TIPMSGI to
guarantee the input message retrieves ALL the
unprotected data from the screen. When MCS-FUNCTION
contains "A" and XMIT is pressed from a location that is
not within or beyond the last unprotected data field, MCS

TIP Programming Reference

112 Proprietary IP-622

automatically places the cursor in the bottom right corner
of the screen and issues an auto-transmit sequence to
reread the entire screen.

 This feature can almost double the transmission traffic
from the terminal (first there is the partial transmit, then the
full transmit) and therefore can be quite costly.

 To minimize transmission traffic, a preferable technique is
to compare MCS-COUNT (the count of actual data
characters received) to MCS-SIZE (the maximum possible
received on that transmission); if MCS-COUNT is less than
MCS-SIZE, the program informs the user (via a call to
TIPMSGE) that XMIT was pressed at the wrong screen
location; then calls TIPMSGI again to allow the terminal
user to press XMIT from the proper location.

 Before a call to TIPMSGI, the program may also modify
various fields defined in the PIB:

PIB-WAIT-TIME

 The program may move a value to PIB-WAIT-TIME to
specify the amount of time that TIPMSGI is to wait for input
from the terminal. If PIB-WAIT-TIME is not altered (and
presumably contains zero), the TIPMSGI subroutine does
not impose a time limit on the arrival of the desired input
message.

 If an input message does not arrive within the number of
seconds defined by the contents of PIB-WAIT-TIME, the
call to TIPMSGI completes, and the resulting value of PIB-
STATUS is "PIB-TIMED-OUT". Programs which place a
limit on the arrival time of input messages, must be
prepared to handle this situation.

 If PIB-WAIT-TIME is set to a negative value then the value
of system parameter TIMEOFF in the tipix.conf file will be
used as the time to wait. Since TIMEOFF is specified in
minutes and TIPMSGI expects a value in seconds TIP
calculates the default PIB-WAIT-TIME as (TIMEOFF * 60).

 This is useful when a site would like to implement a
standard wait time in their programs. If this technique is
used then the wait time is easily altered by adjusting the
TIMEOFF system parameter. For programs that must
operate on both TIP and TIP/30 the value supplied (to
request the default wait time) must be -1.

 For more details, see the description of the PIB-WAIT-
TIME field in the PCS section of this manual.

PIB-LOCK-INDICATOR
The program may choose to move "H" to the field PIB-

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 113

LOCK-INDICATOR to coerce the TIP File Control System
to hold any current record locks that have been acquired
by the program.

 If the PIB-LOCK-INDICATOR is not set to "H", the file
system releases all record locks acquired by the program
that is calling TIPMSGI. This action is taken by the file
system to prevent programs from locking records and
waiting for an inordinate length of time for terminal input.

 If the program chooses to hold record locks across a
TIPMSGI call, the program should also move an
appropriate value to PIB-WAIT-TIME to place an upper
limit on the length of time that the record locks will be
maintained.

Example:

05 FLD-CTRL.

 10 FIELDS PICTURE X

 OCCURS 20.

 MOVE SPACES TO FLD-CTRL

 MOVE "X" TO FIELDS (2)

 FIELDS (4)

 CALL "TIPMSGI" USING MCS

 FLD-CTRL

 EVALUATE TRUE

 WHEN MCS-F-FIELD

 ... field 2 or 4 was just changed ...

 WHEN MCS-XMIT

 ... process complete screen ...

 END-EVALUATE

When the program issues a call to TIPMSGI, MCS waits for the next input
message from the terminal. Unless the program has specified a maximum
time to wait in the PIB-WAIT-TIME field in the PIB, the program does not
return from the call to TIPMSGI until input is received from the terminal.
The input may be via the XMIT key, the MSG WAIT key or a function key.

Upon returning from the call to TIPMSGI, the user program must
interrogate the field MCS-STATUS to establish the type of input received.

If MCS-STATUS indicates MCS-XMIT (or MCS-GOOD), the unprotected
data from the screen was extracted by MCS and placed in the appropriate
fields within MCS-DATA.

Warning: No data is transferred from the device if a function key is
pressed.

TIP Programming Reference

114 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-TIMED-OUT
There was no response within the time
allowed.

PIB-MSG-AVAIL
The response is available. This is not an
error.

 A program may not request two consecutive inputs from a terminal
without some intervening output message. If a user program requests
terminal input and does not satisfy this constraint, TIP causes the
program to abort with the following reason code:

INPUT REQUEST WHEN OUTPUT IS DUE

 If the program placed a maximum wait time value in the field PIB-
WAIT-TIME, the PIB-STATUS is set to either PIB-TIMED-OUT or PIB-
MSG-AVAIL after the call to TIPMSGI, depending on which of those
two mutually exclusive events occurred.

TIPMSGO - Output Data to Screen Format

MCS provides the TIPMSGO subroutine to display a TIP screen format
(with or without) accompanying data.

Syntax:

CALL "TIPMSGO" USING MCS

 [FCC-MODS]

 [CURSOR-MODS]

Where:

MCS
The MCS interface packet.

FCC-MODS
Optional table of two-byte entries (two bytes per field) that
are used to modify the FCC (field control character)
attributes of selected data fields.

 See FCC Modifications on page 122 for details.

CURSOR-MODS
Optional table of one byte entries (one byte per field) that
specifies the field where the cursor is to rest after the call
to TIPMSGO.

 See Cursor Positioning on page 126 for details.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 115

Since this subroutine call is normally the first interaction between the
program and TIP MCS, the program first correctly initialize various

fields in the MCS packet:

MCS-NAME
The program must supply the name of the screen format to
display. MCS searches for the named format in various
groups according to the setting of the keyword
MCSEARCH= in the terminal user's definition record.

MCS-TERM
This field may be set to the name of the desired output
terminal. The default is the terminal that is running the
program.

 This field need only be modified if the program wants to
output the screen on a terminal other than the terminal
running the program.

 Only screen OUTPUT may be redirected in this manner -
terminal input must always occur at the terminal running
the program.

 MSC-FUNCTION of M must be used with MCS-TERM if
you intend to send a screen as an unsolicited message to
a specified alternate terminal. For screen to be displayed
MSG-WAIT must be pressed on the receiving terminal.

 If your intentions are to display the screen automatically on
the specified alternate terminal then you should use the
TIPFORK function. A TIP session must be started on both
terminals and the alternate terminal must not be running
any other transactions.

MCS-FUNCTION
Before issuing a call to TIPMSGO, the program may
specify one of a number of function codes in this field:

space Transmit the entire screen format (both headings
and data).

D Transmit data only (not the heading information).
 When "D" is specified in MCS-FUNCTION, data

fields that contain low values are not sent to the
terminal - the program may use this technique to
avoid resending unchanged data to the terminal,
thereby reducing output transmission.

M Send the output screen format as an unsolicited
message (sends data and heading information).

P Output screen format with a "print" code at the end
of the output message - to transfer screen to
auxiliary printer.

TIP Programming Reference

116 Proprietary IP-622

S Stop sending heading text when the available
MCS-DATA is exhausted (as specified by the value
in MCS-COUNT).

T Unsolicited and Print. The message is sent to the
specified terminal as an unsolicited message. At
the end of the message text the control code to
cause a "print" operation is included. When the
receiving user presses the MSG WAIT key, the
message is displayed and printed on his AUX1
printer.

MCS-HOLD
Set this field to the value "L" to cause MCS to LOCK the
terminal keyboard after the TIPMSGO is completed.

 If a program wishes to send a series of outputs to the
terminal, this setting may be used to lock the keyboard on
all but the final output call.

 A call to TIPMSGI, or a call to TIPMSGO with MCS-HOLD
not set to "L" unlocks the keyboard. The contents of this
field are not preserved - the program must insert the
desired value before issuing a call to TIPMSGO.

MCS-FILLER
The program must specify which fill character to use:
space, underscore or asterisk. If this field contains an
invalid choice of character, an underscore is assumed

MCS-COUNT
The program must specify the number of bytes of data in
the MCS-DATA area that are to be merged with the screen
format. This value can range from zero - when the program
has no data to output - to a maximum of the sum of all data
fields in the screen format.

 If the screen format was defined with "default data" , the
default data will be displayed if either of the following is
true:

11.1.1..1. the field is located beyond the end of
the data supplied in MCS-DATA - according to the
value of MCS-COUNT.

11.1.1..2. the field contains low-values.

 If the program intends to output all of the data for a
particular screen format, a popular technique is to place a
large value in this field (for example, 9999). If new fields
are later added to the screen format, the programmer does
not need to remember to find and modify all references to
the previous high count.

MCS-DATA
If the program has data that is to be output to the screen

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 117

format, the data is placed in the appropriate elementary
fields in this group item before the CALL is issued.

Additional Considerations:

 When "D" is specified in MCS-FUNCTION (transmit data only), MCS
assumes that the heading data is already displayed on the terminal
and sends only the data, as specified by the value in the field MCS-
COUNT.

 MCS only sends a data field if the corresponding area in MCS-DATA
contains a value that is not LOW-VALUES (X'00'). The program can
output selected fields, using MCS-FUNCTION="D"; setting those
fields that are not to be sent to LOW-VALUES.

Error Conditions:

 If the screen format that is named in the field MCS-NAME cannot be
located, (a spelling error?), the program receives PIB-NOT-FOUND
error status and the terminal screen is erased. The following message
is displayed on the terminal:

 <<<< UNDEFINED SCREEN FORMAT REQUESTED >>>>

 $TRANID$ requested UNDEF

Where:

$TRANID$
is the transaction code of the program that issued the
TIPMSGO CALL

UNDEF
is the data that was found in the field MCS-NAME.

TIPMSGOV - Overlay Current Screen

The TIPMSGOV call displays an MCS screen format and overlays the
current screen. TIPMSGOV takes exactly the same parameters as

TIPMSGO. See TIPMSGO Output Data to Screen Format on page
150. The new screen is positioned based on the values in PIB-ALT-MCS-
ROW and PIB-ALT-MCS-COL and is boxed in. You may issue this call up
to 15 times to produce a tiling effect on the terminal. Each TIPMSGOV
request saves the previous contents of the screen.

When a call is issued to TIPMSGOV, the value in the field PIB-MCS-
OVERLAY (programs can interrogate this field to determine how many of
the maximum 15 overlays are displayed).

TIPMSGOV will return with a PIB-STATUS of PIB-OVERFLOW if the
MCS internal stack overflows, that is, if too many screens have been
overlaid.

TIP Programming Reference

118 Proprietary IP-622

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPMSGOV" USING MCS

 [FCC-MODS]

 [CURSOR-MODS]

Where:

MCS
The MCS interface packet previously described.

FCC-MODS
Optional table of two-byte entries (two bytes per field) that
are used to modify the FCC (field control character)
attributes of selected data fields.

 See FCC Modifications on page 122 for details.

CURSOR-MODS
Optional table of one-byte entries (one byte per field) that
specifies the field where the cursor is to rest after the call
to TIPMSGO.

 See Cursor Positioning on page 126 for details.

Example:

MOVE 5 TO PIB-ALT-MCS-ROW

MOVE 10 TO PIB-ALT-MCS-COL

CALL "TIPMSGOV" USING MCS

CALL "TIPMSGI" USING MCS

 FLD-CTRL

EVALUATE TRUE

 WHEN MCS-FKEY6

 CALL "TIPMSGRS"

 WHEN MCS-FKEY8

 CALL "TIPERASE"

 ...

 WHEN ...

 ...

 END-EVALUATE

IF PIB-MCS-OVERLAY > 0

 CALL "TIPMSGRS"

END-IF

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 119

Example of TIPMSGOV displaying an overlay screen:

TIPMSGPR - Print Current Screen

TIPMSGPR has not been implemented in TIP Studio. For the functionality
found with TIPMSGPR move a 'P' to the MCS-FUNCTION field prior to
issuing a TIPMSGO call. This is exactly the way TIP/30 worked.The call
TIPMSGPR prints an MCS screen format (headings and data) by creating
a print line for each line of the screen format and passing that print line to
the TIPPRINT subroutine.

The interface to TIPPRINT must already be OPEN; this call outputs as
many lines as are represented by the screen format.

Syntax:

CALL "TIPMSGPR" USING print-packet

 MCS

 tipprint-buffer.

print-packet
The first parameter is the printer definition packet that was
used as the first parameter on the CALL TIPPRINT with an
FCS-OPEN function. This packet is described in the
documentation for TIPPRINT; essentially it contains the
name of the printer that is to be used.

TIP Programming Reference

120 Proprietary IP-622

MCS
The second parameter is the MCS area for the current
screen format.

tipprint-buffer
The third parameter is the printer buffer that was used as
the fourth parameter on the CALL TIPPRINT with an FCS-
OPEN function. This packet is described in the
documentation for TIPPRINT; essentially it contains the
name of the buffer that TIPPRINT uses.

Additional Considerations:

 This routine generates as many print lines as needed to represent the
current screen format. This routine only issues calls to TIPPRINT with
the FCS-PUT function code; it does not open or close the TIPPRINT
interface. Other print lines (regardless of origin) can be output by the
program before and after using this call.

TIPMSGRS - Pop the Current Screen

The call TIPMSGRS is the logical inverse of the call to TIPMSGOV.
TIPMSGOV pushes an overlay screen on a stack; TIPMSGRS pops the
overlay stack and restores the previous screen contents. Each time
TIPMSGRS is called (and there is something to restore!), the value in
PIB-MCS-OVERLAY is decremented by 1.

Syntax:

CALL "TIPMSGRS"

There are no parameters for this call.

Example:

MOVE 5 TO PIB-ALT-MCS-ROW

MOVE 10 TO PIB-ALT-MCS-COL

CALL "TIPMSGOV" USING MCS

CALL "TIPMSGI" USING MCS

 FLD-CTRL

EVALUATE TRUE

 WHEN MCS-FKEY6

 CALL "TIPMSGRS"

 WHEN MCS-FKEY8

 CALL "TIPERASE"

 ...

 WHEN ...

 ...

END-EVALUATE

IF PIB-MCS-OVERLAY > 0

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 121

 CALL "TIPMSGRS"

END-IF

TIPMSGRV - Force Full Screen Transmit

On Uniscope terminals, the data between HOME or the last start of entry
character (>) and the cursor is transmitted to the host whenever the
terminal operator presses XMIT (the character that is under the cursor is
normally included too!).

The terminal operator may (by mistake) press XMIT part way through a
screen thereby transmitting only a partial screen instead of the whole
screen. This causes only some of the intended data to be transmitted to
the host.

A TIP program may use the TIPMSGRV function to ensure that the entire
screen is read when input is requested from the terminal. After a call to
TIPMSGI, MCS sets the field MCS-COUNT to the number of characters
of data received. The program can compare this value with the value in
MCS-SIZE, which is the maximum number of bytes that could have been
received on that transmission.

If MCS-COUNT is less than MCS-SIZE, the cursor was not in or beyond
the last data field when XMIT was pressed.

The program can ignore this operator error by calling TIPMSGRV. The
TIPMSGRV subroutine positions the cursor at the bottom right corner of
the terminal (or at the end of a specific row) and causes an auto-transmit
to occur (effectively transmitting the screen contents).

After the call to TIPMSGRV, all unprotected data from the screen is
placed in the data area of the MCS packet - the program must not call

TIPMSGI the TIPMSGRV subroutine repeats the call to TIPMSGI after
forcing the cursor to the appropriate location and causing an auto
transmit.

Syntax:

CALL "TIPMSGRV" USING MCS

 [row]

Where:

MCS
The MCS interface packet previously described.

row
Optional binary halfword field (PIC 9(2) BINARY) that
specifies the screen row number where the cursor is
placed before the auto-transmit.

TIP Programming Reference

122 Proprietary IP-622

 For example, specify a row number of 12 to cause
TIPMSGRV to position the cursor in the last column of row
12 before issuing the auto-transmit code.

 If this parameter is omitted or the value is out of range, the
cursor is placed at the end of the last row of the terminal.

TIPTITLE - Display Title

The call TIPTITLE displays a title on the first display line of your screen.
The title text is automatically centered.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPTITLE"

Example:

01 ATITLE PICTURE X(80)

 VALUE "TIP MCS Windowing Demo".

 ...

 CALL "TIPTITLE" USING ATITLE

Additional Considerations:

 TIPTITLE will always display a title on line one of the display. If there
is anything already on line one, TIPTITLE will overlay it. A subsequent
call to TIPMSGO is adjusted down 1 row to accommodate the title
line. A call to TIPERASE cancels the effect of the title

FCC Modifications

The attributes of data fields in a screen format are specified in the screen
format definition. There are situations, however, when the program needs
to modify the attributes of a field in a screen format while the screen
format is in use.

Using an override mechanism of MCS the program can dynamically alter

the attributes of a field on calls to TIPMSGE and TIPMSGO.

This facility is available only on terminals that support the Field Control
Character (FCC) method of establishing field attributes.

FCC modifications are specified as a table of two-byte entries that MCS
uses to modify the attributes of the field(s) on the terminal. For additional
information see the Unisys publication UTS-400 Programmer Reference
(UP-8359) - FCC Sequence from Host Processor.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 123

Each table entry consists of two characters that represent the "m" and "n"
characters used in the construction of the FCC sequence for the field
corresponding to the table entry (two bytes per field).

The field characteristics depend on the setting of the characters:

Character Description

Space
Set either character to this value to avoid modifying the
FCC attributes of the corresponding field.

X'00'
Low values (binary zeroes) may be used in the same
way as a space (see description of "space" above).

*
Set either character to an asterisk to make the cursor
rest in the corresponding data field when the data is sent
to the terminal.

.U
Set the two bytes to this value to unprotect the field while
leaving the other characteristics unchanged.

.P
Set the two bytes to this value to protect the field, while
leaving the other characteristics unchanged.

.B
Set the two bytes to this value to blink the field, while
leaving the other characteristics unchanged.

TC-FCC copybook

Include the supplied COBOL copybook (TIP/TC-FCC) in the program (in
the WORKING-STORAGE SECTION) to simplify selection of the desired
"m" and "n" characters.

*

* TIP/30 - FCC MODIFICATION EQUATES

*

* FOLLOWING VALUES ARE USED FOR THE FCC "M" FIELD

*

05 FCC-M-TAB-NRM-CHG PICTURE X VALUE "0".

05 FCC-M-TAB-OFF-CHG PICTURE X VALUE "1".

05 FCC-M-TAB-LOW-CHG PICTURE X VALUE "2".

05 FCC-M-TAB-BLK-CHG PICTURE X VALUE "3".

05 FCC-M-TAB-NRM PICTURE X VALUE "4".

05 FCC-M-TAB-OFF PICTURE X VALUE "5".

05 FCC-M-TAB-LOW PICTURE X VALUE "6".

05 FCC-M-TAB-BLK PICTURE X VALUE "7".

05 FCC-M-NRM-CHG PICTURE X VALUE "8".

05 FCC-M-OFF-CHG PICTURE X VALUE "9".

05 FCC-M-LOW-CHG PICTURE X VALUE ":".

05 FCC-M-BLK-CHG PICTURE X VALUE ";".

05 FCC-M-NRM PICTURE X VALUE "<".

05 FCC-M-OFF PICTURE X VALUE "=".

05 FCC-M-LOW PICTURE X VALUE ">".

05 FCC-M-BLK PICTURE X VALUE "?".

*

TIP Programming Reference

124 Proprietary IP-622

*** FOLLOWING VALUES ARE USED FOR THE FCC "N" FIELD

*

05 FCC-N-ANY PICTURE X VALUE "0".

05 FCC-N-ALPHA PICTURE X VALUE "1".

05 FCC-N-NUMERIC PICTURE X VALUE "2".

05 FCC-N-PROTECT PICTURE X VALUE "3".

05 FCC-N-ANY-RIGHT PICTURE X VALUE "4".

05 FCC-N-ALPHA-RIGHT PICTURE X VALUE "5".

05 FCC-N-NUMERIC-RIGHT PICTURE X VALUE "6".

*

* A VALUE OF SPACE IN EITHER THE M OR N FIELD IMPLIES

* NO MODIFICATION DESIRED FOR THOSE ATTRIBUTES

*

* THESE VALUES ARE USED TO CHANGE PROTECTION

*

05 FCC-PROTECT PICTURE XX VALUE ".P".

05 FCC-UNPROTECT PICTURE XX VALUE ".U".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY

*

05 FCC-SHADED PICTURE XX VALUE ".S".

05 FCC-OFF PICTURE XX VALUE ".O".

05 FCC-NORMAL PICTURE XX VALUE ".N".

05 FCC-LOW PICTURE XX VALUE ".L".

05 FCC-BLINK PICTURE XX VALUE ".B".

05 FCC-REVERSE PICTURE XX VALUE ".R".

05 FCC-FLASHING PICTURE XX VALUE ".F".

05 FCC-GROTESQUE PICTURE XX VALUE ".G".

05 FCC-HIDEOUS PICTURE XX VALUE ".H".

05 FCC-COLOR-10 PICTURE XX VALUE ".0".

05 FCC-COLOR-11 PICTURE XX VALUE ".1".

05 FCC-COLOR-12 PICTURE XX VALUE ".2".

05 FCC-COLOR-13 PICTURE XX VALUE ".3".

05 FCC-COLOR-14 PICTURE XX VALUE ".4".

05 FCC-COLOR-15 PICTURE XX VALUE ".5".

05 FCC-COLOR-16 PICTURE XX VALUE ".6".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY AND ADD TABS

*

05 FCC-SHADED-TAB PICTURE XX VALUE "#S".

05 FCC-OFF-TAB PICTURE XX VALUE "#O".

05 FCC-NORMAL-TAB PICTURE XX VALUE "#N".

05 FCC-LOW-TAB PICTURE XX VALUE "#L".

05 FCC-BLINK-TAB PICTURE XX VALUE "#B".

05 FCC-REVERSE-TAB PICTURE XX VALUE "#R".

05 FCC-FLASHING-TAB PICTURE XX VALUE "#F".

05 FCC-GROTESQUE-TAB PICTURE XX VALUE "#G".

05 FCC-HIDEOUS-TAB PICTURE XX VALUE "#H".

05 FCC-COLOR-10-TAB PICTURE XX VALUE "#0".

05 FCC-COLOR-11-TAB PICTURE XX VALUE "#1".

05 FCC-COLOR-12-TAB PICTURE XX VALUE "#2".

05 FCC-COLOR-13-TAB PICTURE XX VALUE "#3".

05 FCC-COLOR-14-TAB PICTURE XX VALUE "#4".

05 FCC-COLOR-15-TAB PICTURE XX VALUE "#5".

05 FCC-COLOR-16-TAB PICTURE XX VALUE "#6".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY AND PROTECT

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 125

*

05 FCC-SHADED-PROT PICTURE XX VALUE "!S".

05 FCC-OFF-PROT PICTURE XX VALUE "!O".

05 FCC-NORMAL-PROT PICTURE XX VALUE "!N".

05 FCC-LOW-PROT PICTURE XX VALUE "!L".

05 FCC-BLINK-PROT PICTURE XX VALUE "!B".

05 FCC-REVERSE-PROT PICTURE XX VALUE "!R".

05 FCC-FLASHING-PROT PICTURE XX VALUE "!F".

05 FCC-GROTESQUE-PROT PICTURE XX VALUE "!G".

05 FCC-HIDEOUS-PROT PICTURE XX VALUE "!H".

05 FCC-COLOR-10-PROT PICTURE XX VALUE "!0".

05 FCC-COLOR-11-PROT PICTURE XX VALUE "!1".

05 FCC-COLOR-12-PROT PICTURE XX VALUE "!2".

05 FCC-COLOR-13-PROT PICTURE XX VALUE "!3".

05 FCC-COLOR-14-PROT PICTURE XX VALUE "!4".

05 FCC-COLOR-15-PROT PICTURE XX VALUE "!5".

05 FCC-COLOR-16-PROT PICTURE XX VALUE "!6".

Example:

Assume that the screen format has three fields: name, address, and
credit limit.

05 SCREEN-NAME PICTURE X(40).

05 SCREEN-ADDR PICTURE X(40).

05 SCREEN-CRLIMIT PICTURE S9(5)V99.

Also assume that an FCC-MODS table is set up in the program's WORK
area to build the modifications. Although the table can be specified as an
array (that is indexed or subscripted), the following method is preferable
because fields can be added or removed from the screen format without
major maintenance work (since the FCC modification entries are
referenced by name rather than absolute position in the table).

05 FCC-MODS.

 10 FCC-MOD-NAME PICTURE X(2).

 10 FCC-MOD-ADDR PICTURE X(2).

 10 FCC-MOD-CRLIMIT PICTURE X(2).

To protect the credit limit in the program (presuming that the field is
defined by the screen format to be unprotected) the following statements
are required:

MOVE SPACES TO FCC-MODS.

MOVE ".P" TO FCC-MOD-CRLIMIT

 ...

CALL "TIPMSGO" USING MCS

 FCC-MODS

In this example, the COBOL coding is relatively simple because the literal
is exactly two bytes long and conveniently matches the receiving field.
Many times, however, it is necessary to construct a two byte "m" and "n"
sequence from the entries provided in the copybook TIP/TC-FCC.

TIP Programming Reference

126 Proprietary IP-622

COBOL provides a STRING verb to facilitate this sort of operation:

STRING FCC-M-TAB-BLK FCC-N-NUMERIC

DELIMITED BY SIZE

INTO FCC-MOD-CRLIMIT

The statement shown above concatenates the two named fields from the
copybook (in that order) to create a two-byte value that is then placed in
the field FCC-MOD-CRLIMIT. The specification FCC-M-TAB-BLK
indicates that a tab is to be set (-TAB) and that the field is to blink (-BLK).
The specification FCC-N-NUMERIC indicates that the field is to have the
numeric attribute forced on.

Using the STRING verb eliminates the need to define each FCC MOD
entry as a group item with two subordinate single byte elementary items.

Additional Considerations:

 It is crucial that there are exactly two bytes per field in the FCC
modification table - use the COBOL command of the MSGAR utility
transaction to verify the number of data fields in the screen format.

Cursor Positioning

The program may wish to use the FCC-MODS parameter to alter the
attributes of a field (see previous section) and to force the cursor into a
field that has an FCC mod specified. Since the table entry cannot
simultaneously hold the FCC modification and the asterisk character, the
program must use the CURSOR-MODS parameter (when calling
TIPMSGE and TIPMSGO) in such a situation.

The CURSOR-MODS parameter specifies a table of one-byte entries
(one byte per field in the screen format).

The program may place an asterisk (*) in the appropriate byte to force the
cursor to rest in the corresponding field in the screen format. This facility
is normally required only when the program needs to use FCC-MODS to
alter a field's attributes and also needs to force the cursor into the same
field.

Additional Considerations:

 It is crucial to have exactly one byte per field in the CURSOR
modification table. Use the COBOL command of the MSGAR utility
transaction to verify the number of data fields in the screen format.

Context Sensitive Help

You may enter help text into the TIP "TIPMCS" file using either tfd or
msgar utility programs. The msgar commands HImport HXport and

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 127

HUpdate are available for manipulating help information (see the
documentation for msgar in the TIP Utilities manual.)

Help text is comprised of a series of lines of ASCII text and is given a
name. TFD associates the help text name with any given data field in an
MCS format or the format itself. An end user may, at any time, press Ctrl-
f h to cause TIP to display the help text associated with the field where
the cursor is resting. Help text usage is application independent - the
application is not affected by its use.

Once TIP has displayed the help text window, the end user may use the
cursor control keys to scan through the help text. TIP will highlight the
currently selected line of help text. If the user presses ENTER the line of
highlighted data is entered into the field on the MCS format. If the end
user presses ESC nothing is entered. In both cases TIP removes the help
text window from the terminal.

Help Text Definition

You may create help text in an ASCII text file using any text editor. A
single text file may contain one or more help text definitions. The file is
imported and each named help becomes a separate record in "TIPMCS".
Use the command MSGAR HI MYHELP.

The MSGAR utility reads the text file looking for a line that begins with
HELP=. Following the equal sign is the name of the help text, some
comments enclosed in double quotes and then a period. Subsequent
keywords help to define the display characteristics of the help text.

The first few lines beginning with an exclamation mark are treated as
heading lines. Heading lines are displayed but the end user cannot select
them (they are protected). The first line or lines may contain some
keywords that define additional information.

End users may select any line following the heading lines (if any). Lines
following a selectable line, and beginning with an # define additional
information that appears in a footing area when that line is selected.

The entire help text definition is terminated with a line, which begins with
a period.

Applicable keywords are:

LINES=
Number of selectable lines to display at once. If not
specified, this is calculated by TIP.

HEADCHAR=
Defines a character other than "!" that identifies the
heading lines.

TIP Programming Reference

128 Proprietary IP-622

CMTCHAR=
Defines a character other than "#" that identifies the footing
information lines.

POS=(row,col)
Defines the exact position where the help text is to be
displayed. If omitted, this is calculated to be close to the
field cursor location.

STYLE=MENU
Declares that the information is to be displayed in a "menu
bar" presentation style instead of a "pick from a list" style.

Example of Help Text:

HELP=DEMO1 "This is a sample of Help".

LINES=4,CMTCHAR=*

!This is a demo of the

!TIP help facility

!Select one of the following

Apple

*Delicious and good for you

Banana

*From down south

Orange

*From Florida

Potato

*From P.E.I.

Carrot

*Good for your eyes

Prunes

*Good for your digestion

In this example only four lines of selectable text will be displayed at once,
but the end user may scroll through off screen data. The help processor
will also quick scan to a line when you enter a letter on the keyboard. If
you entered the letter "p" then the help text processor will scan to the next
line that contains an uppercase "P".

The displayed help text window for the above example would look like the
following:

|This is a demo of the |

|TIP help facility |

|Select one of the following |

|Apple | |

|Banana | |

|Orange | |

|Potato | v|

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 129

|Delicious and good for you |

The small narrow box on the right with the v is indicating that there are
more lines off-screen below. You can move to the off screen data by
using the down arrow key. You could quickly go to the Carrot line by
pressing the letter C.

The "menu bar" presentation style would look like the following:

Apple Banana Orange Potato Carrot Prunes

 Delicious and good for you

TSTWIN - Sample TIP Program

The following sample program is provided with TIP in binary and source
code format. This simple program illustrates how to use the new
windowing features of TIP, which are supported by the MCS facility. The
new TIP calls in this program are: TIPMENU, TIPLIST, TIPASK,
TIPFORKW, TIPWINAP, TIPASKYN, TIPMSGOV, and TIPMSGRV.

The TIP CALLs that are used in this program are explained elsewhere in
this manual.

IDENTIFICATION DIVISION.

 PROGRAM-ID. TSTWIN.

 *--+

 *

 * T I P / i x S A M P L E P R O G R A M *

 *

 *--+

 *

 * This is a sample program to illustrate how *

 * to use the MCS windowing features of TIP. *

 *

 *--+

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 DATA DIVISION.

WORKING-STORAGE SECTION.

01 IN-HELP1 PICTURE X(8) VALUE "1235".

 01 IN-TEXT1.

 05 FILLER PIC X(35) VALUE "Beer ".

 05 FILLER PIC X(35) VALUE "Cardhu ".

 05 FILLER PIC X(35) VALUE "Rum ".

 05 FILLER PIC X(35) VALUE "Imported wine".

 05 FILLER PIC X(35) VALUE "Old sailor ".

 05 FILLER PIC X(35) VALUE "eXport beer ".

 05 FILLER PIC X(35) VALUE "iMported beer".

 05 FILLER PIC X(35) VALUE "Cognac VSOP ".

 05 FILLER PIC X(35) VALUE "Scotch ".

 05 FILLER PIC X(35) VALUE "Single malt ".

TIP Programming Reference

130 Proprietary IP-622

 05 FILLER PIC X(35) VALUE "12 year old ".

 05 FILLER PIC X(35) VALUE "How old am i?".

01 IN-HELP2 PICTURE X(8) VALUE "1330".

 01 IN-TEXT2.

 05 FILLER PIC X(30) VALUE "!What is your sport?".

 05 FILLER PIC X(30) VALUE " Golf ".

 05 FILLER PIC X(30) VALUE "# Relaxing? ".

 05 FILLER PIC X(30) VALUE " Baseball ".

 05 FILLER PIC X(30) VALUE "# Go Blue jays ".

 05 FILLER PIC X(30) VALUE " Racquet ball ".

 05 FILLER PIC X(30) VALUE "# Smack it hard".

 05 FILLER PIC X(30) VALUE " Mud wrestling ".

 05 FILLER PIC X(30) VALUE "# Male or female".

 05 FILLER PIC X(30) VALUE " Skinning bears".

 05 FILLER PIC X(30) VALUE "# Sandy's favorite".

 05 FILLER PIC X(30) VALUE " Quaffing beer ".

 05 FILLER PIC X(30) VALUE "# Barry's favorite".

01 ATITLE PIC X(80) VALUE "TIP MCS Windowing Demo".

01 MENU1.

 05 FILLER PIC X(10) VALUE "Display ".

 05 FILLER PIC X(10) VALUE "Update ".

 05 FILLER PIC X(10) VALUE "Cancel ".

 05 FILLER PIC X(10) VALUE "End ".

 05 FILLER PIC X(10) VALUE "Quit ".

 05 FILLER PIC X(10) VALUE "Home ".

 05 FILLER PIC X(20) VALUE " Pick one and Enter".

 01 FILLER REDEFINES MENU1.

 05 MENU-ITEM OCCURS 8 PIC X(10).

 77 ROW10 PICTURE 999 BINARY VALUE 10.

/

LINKAGE SECTION.

 01 PIB. COPY TC-PIB.

 01 MCS. COPY TC-MCS.

 *

 * LAYOUT OF THE MENU SELECTION DISPLAY

05 MENU-SELECT OCCURS 4 TIMES PICTURE X.

 *

 * LAYOUT OF OVERLAY DISPLAY

 02 OVERLAY-SCREEN REDEFINES MCS-DATA.

 05 MENU-POS 1PICTURE 9.

 05 OVER-SELECT OCCURS 3 TIMES PICTURE X.

01 WORK-AREA.

 05 ERROR-MESSAGE PICTURE X(30).

 05 ERROR-FLAG PICTURE X.

 88 FIELDS-IN-ERROR VALUE "E".

 05 FLASH-FLAG PICTURE X.

 88 FIRST-TIME VALUE "1".

 88 MULTI-ERROR VALUE "2".

 05 SAVE-MCS-COUNT PICTURE 9(4)

 COMPUTATIONAL-4.

 05 SAVE-MCS-FUNCTION PICTURE X.

 05 SAVE-LOCK-INDICATOR PICTURE X.

 05 FIELD-CONTROL.

 10 FIELD-X OCCURS 4 TIMES PICTURE X.

 05 LST-I PICTURE 9(4) BINARY.

 05 II PICTURE 9(4) BINARY.

 05 JJ PICTURE 9(4) BINARY.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 131

 05 HELP-NAME PICTURE X(8).

 05 REPLY-TEXT PICTURE X(80).

 05 FILLER REDEFINES REPLY-TEXT.

 10 TXT PIC X OCCURS 80 TIMES.

 05 PROMPT-TEXT PICTURE X(80).

 05 FILLER REDEFINES PROMPT-TEXT.

 10 TXTX PIC X OCCURS 80 TIMES.

 01 CDA. COPY TC-CDA.

 /

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

INITIALIZATION.

 MOVE SPACES TO ERROR-MESSAGE.

MAIN-LOOP.

 IF CDA-PARAM (1) = " "

 CALL "TIPTITLE" USING ATITLE

 ELSE

 IF CDA-PARAM (1) NOT = "NO "

 CALL "TIPTITLE" USING CDA-TEXT

 END-IF

 END-IF

 CALL "TIPMENU" USING MENU1

 MOVE "MCS0010A" TO MCS-NAME

 MOVE SPACES TO MCS-DATA

 MOVE 0 TO MCS-COUNT

 * An 'X' indicates that control is wanted if the field changes

 MOVE ALL "X" TO FIELD-CONTROL

 PERFORM SEND-OUTPUT.

MAIN-INPUT.

MOVE " " TO REPLY-TEXT

 PERFORM GET-INPUT

 IF MCS-F-FIELD

 * One of the fields was typed into

 IF MENU-SELECT (MCS-COUNT) = "H"

 MOVE "HELPX2" TO HELP-NAME

 CALL "TIPLIST" USING HELP-NAME REPLY-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "P"

 MOVE "Type something clever" TO PROMPT-TEXT

 MOVE "Hi" TO REPLY-TEXT

 CALL "TIPASK" USING REPLY-TEXT PROMPT-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "W"

 MOVE "Enter Transaction for next Window"

 TO PROMPT-TEXT

 MOVE SPACES TO REPLY-TEXT

 CALL "TIPASK" USING REPLY-TEXT PROMPT-TEXT

 IF REPLY-TEXT NOT = SPACES

 MOVE SPACES TO PIB-TRID CDA PROMPT-TEXT

 PERFORM VARYING II FROM 1 BY 1

 UNTIL TXT(II) = " "

TIP Programming Reference

132 Proprietary IP-622

 MOVE TXT(II) TO PIB-TRID(II:1)

 END-PERFORM

 PERFORM UNTIL TXT(II) NOT = " "

 OR II > 60

 ADD 1 TO II

 END-PERFORM

 PERFORM VARYING JJ FROM 1 BY 1

 UNTIL II > 79

 MOVE TXT(II) TO TXTX(JJ)

 ADD 1 TO II

 END-PERFORM

 MOVE PROMPT-TEXT TO CDA

 CALL "TIPFORKW"

 END-IF

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "A"

 MOVE "Enter Windows Application command line"

 TO PROMPT-TEXT

 MOVE SPACES TO REPLY-TEXT

 CALL "TIPASK" USING REPLY-TEXT PROMPT-TEXT

 IF REPLY-TEXT NOT = SPACES

 CALL "TIPWINAP" USING REPLY-TEXT

 END-IF

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "Q"

 CALL "TIPASK" USING REPLY-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "Y"

 MOVE "Type something clever (Y/N)" TO PROMPT-TEXT

 MOVE "Y" TO REPLY-TEXT

 CALL "TIPASKYN" USING REPLY-TEXT PROMPT-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "N"

 MOVE "N" TO REPLY-TEXT

 CALL "TIPASKYN" USING REPLY-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 IF MENU-SELECT (MCS-COUNT) = "1"

 CALL "TIPLIST" USING IN-HELP1 REPLY-TEXT IN-TEXT1

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 /

 IF MENU-SELECT (MCS-COUNT) = "2"

 CALL "TIPLIST" USING IN-HELP2 REPLY-TEXT IN-TEXT2

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 133

 IF MENU-SELECT (MCS-COUNT) = "T"

 MOVE 5 TO PIB-WAIT-TIME

 END-IF

 MOVE ALL "X" TO FIELD-CONTROL

 MOVE " " TO FIELD-X (1)

 * MOVE SPACES TO MCS-DATA

 MOVE MCS-COUNT TO MENU-POS

 MOVE "MCS0020A" TO MCS-NAME

 ADD 3 TO PIB-ALT-MCS-ROW

 ADD 6 TO PIB-ALT-MCS-COL

 IF PIB-ALT-MCS-COL > 38

 SUBTRACT 27 FROM PIB-ALT-MCS-COL

 END-IF

 IF PIB-ALT-MCS-ROW > 10

 SUBTRACT 7 FROM PIB-ALT-MCS-ROW

 END-IF

 EVALUATE TRUE

 WHEN PIB-MCS-OVERLAY > 13

 MOVE "MCS stack overflow" TO PROMPT-TEXT

 CALL "TIPERASE"

 CALL "ROLL" USING PROMPT-TEXT

 CALL "TIPRTN"

 WHEN OTHER

 MOVE "Cursor (rrr,ccc) " TO ERROR-MESSAGE

 MOVE PIB-CUR-MCS-ROW TO ERROR-MESSAGE (9:3)

 MOVE PIB-CUR-MCS-COL TO ERROR-MESSAGE (13:3)

 PERFORM SEND-OVERLAY

 END-EVALUATE

 GO TO MAIN-INPUT

 END-IF.

IF MCS-MSG-WAIT

 IF PIB-MCS-OVERLAY <= 0

 MOVE "TIP MCS window testing ending" TO PROMPT-TEXT

 CALL "TIPERASE"

 CALL "ROLL" USING PROMPT-TEXT

 CALL "TIPRTN"

 END-IF

 PERFORM POP-OVERLAY

 GO TO MAIN-INPUT

 END-IF

IF MCS-FKEY4

 MOVE "TIP MCS window testing ending" TO PROMPT-TEXT

 CALL "TIPERASE"

 CALL "ROLL" USING PROMPT-TEXT

 CALL "TIPRTN"

 END-IF

IF MCS-FKEY2

 CALL "TIPERASE"

 GO TO MAIN-LOOP

 END-IF

IF MCS-F-MENU

 MOVE "Menu Bar" TO REPLY-TEXT

 PERFORM SHOW-REPLY

 GO TO MAIN-INPUT

 END-IF.

IF MCS-FKEY5

 CALL "TIPMSGRV" USING MCS

TIP Programming Reference

134 Proprietary IP-622

 MOVE "Count " TO ERROR-MESSAGE

 MOVE MCS-COUNT TO ERROR-MESSAGE (12:5)

 CALL "TIPMSGE" USING MCS ERROR-MESSAGE

 MOVE SPACES TO ERROR-MESSAGE

 GO TO MAIN-INPUT

 END-IF.

IF MCS-FKEY6

 CALL "TIPMSGRV" USING MCS ROW10

 MOVE "Count Row" TO ERROR-MESSAGE

 MOVE MCS-COUNT TO ERROR-MESSAGE (12:5)

 CALL "TIPMSGE" USING MCS ERROR-MESSAGE

 MOVE SPACES TO ERROR-MESSAGE

 GO TO MAIN-INPUT

 END-IF.

IF PIB-TIMED-OUT

 MOVE SPACES TO MCS-DATA

 IF PIB-MCS-OVERLAY > 0

 PERFORM POP-OVERLAY

 END-IF

 MOVE "KeyBoard timed out" TO ERROR-MESSAGE

 PERFORM SEND-OUTPUT

 GO TO MAIN-INPUT

 END-IF.

IF PIB-MCS-OVERLAY > 0

 PERFORM POP-OVERLAY

 IF PIB-MCS-OVERLAY > 0

 MOVE SPACES TO MCS-DATA

 MOVE 0 TO MCS-COUNT

 MOVE "Window #" TO ERROR-MESSAGE

 MOVE PIB-MCS-OVERLAY TO ERROR-MESSAGE (9:3)

 PERFORM SEND-OUTPUT

 GO TO MAIN-INPUT

 END-IF

 GO TO MAIN-LOOP

 END-IF.

 MOVE "Program ending" TO PROMPT-TEXT

 MOVE PIB-ALT-MCS-ROW TO PROMPT-TEXT (30:2)

 CALL "TIPERASE"

 CALL "ROLL" USING PROMPT-TEXT

 CALL "TIPRTN".

/ **** TERMINAL INPUT/OUTPUT CALLS ****

 *---***

 * SEND ERROR MESSAGE: ***

 * IF NOT FIRST ERROR MESSAGE, THEN RE-FRESH FCC"S. ***

 *---***

 SEND-ERROR.

 IF NOT FIRST-TIME

 MOVE "R" TO MCS-FUNCTION.

 CALL "TIPMSGE" USING MCS ERROR-MESSAGE.

 MOVE SPACES TO ERROR-MESSAGE.

 MOVE "2" TO FLASH-FLAG.

 *---***

 * SEND THE OUTPUT SCREEN: ***

 * IF SAME SCREEN WAS USED BEFORE, THEN SEND DATA ONLY ***

 * IF ERROR MESSAGE NOT SPACES, THEN SEND ERROR AS WELL ***

 *---***

 SEND-OUTPUT.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 135

 MOVE MCS-COUNT TO SAVE-MCS-COUNT

 MOVE MCS-FUNCTION TO SAVE-MCS-FUNCTION

 IF MCS-NAME EQUAL TO PIB-LAST-MCS-NAME

 MOVE "D" TO MCS-FUNCTION

 ELSE

 MOVE " " TO MCS-FUNCTION

 END-IF

 IF ERROR-MESSAGE NOT EQUAL SPACES

 CALL "TIPMSGEO" USING ERROR-MESSAGE

 END-IF

 CALL "TIPMSGO" USING MCS

 MOVE "1" TO FLASH-FLAG

 MOVE SPACES TO ERROR-MESSAGE

 MOVE SAVE-MCS-FUNCTION TO MCS-FUNCTION.

 *---***

 * SEND THE OVERLAY SCREEN: ***

 * IF ERROR MESSAGE NOT SPACES, THEN SEND ERROR AS WELL ***

 *---***

 SEND-OVERLAY.

 MOVE MCS-COUNT TO SAVE-MCS-COUNT

 MOVE MCS-FUNCTION TO SAVE-MCS-FUNCTION

 MOVE " " TO MCS-FUNCTION

 IF ERROR-MESSAGE NOT EQUAL SPACES

 CALL "TIPMSGEO" USING ERROR-MESSAGE

 END-IF

 CALL "TIPMSGOV" USING MCS

 MOVE "1" TO FLASH-FLAG

 MOVE SPACES TO ERROR-MESSAGE

 MOVE SAVE-MCS-FUNCTION TO MCS-FUNCTION.

 *---***

 * POP the current overlay screen off and restore original ***

 *---***

 POP-OVERLAY.

 CALL "TIPMSGRS".

 MOVE PIB-LAST-MCS-NAME TO MCS-NAME.

 /

 *---***

 * WAIT FOR TERMINAL"S REPLY. ***

 * Ask for Field level input returned ***

 *---***

 GET-INPUT.

 MOVE PIB-LOCK-INDICATOR TO SAVE-LOCK-INDICATOR.

 IF PIB-WAIT-TIME = 0

 MOVE -1 TO PIB-WAIT-TIME.

 CALL "TIPMSGI" USING MCS FIELD-CONTROL.

 *---***

 * Show REPLY in the Error message field ***

 *---***

 SHOW-REPLY.

 MOVE "F" TO ERROR-MESSAGE

 MOVE PIB-MCS-KEY TO ERROR-MESSAGE (2:1)

 MOVE PIB-MCS-FIELD TO ERROR-MESSAGE (4:4)

 MOVE REPLY-TEXT TO ERROR-MESSAGE (10:20)

 MOVE SPACES TO MCS-DATA

 PERFORM SEND-OUTPUT.

TIP Programming Reference

136 Proprietary IP-622

Line Oriented Terminal I/O

The subroutines described in this section provide terminal I/O handling
capabilities that programs may use to interact with the terminal on a line-
by-line basis. This mode of interaction is a more primitive level of control
than that offered by the TIP Message Control System (MCS), which was
discussed in the previous section.

Native Mode Program

A native mode TIP program may use these subroutines to facilitate direct
control of terminal input and output in situations that require low volume
interaction with the user.

For example:

 Continuation prompts ("Continue Yes/No")

 Simple data entry ("Enter an account number:").

Line oriented terminal I/O operations are similar to facilities provided by
many of the popular programming languages available on personal
computers (such as BASIC). As the name implies, input and output
operations are restricted to applications where single line prompts and
replies are sufficient.

Subroutine Description

BREAK Check for operator break (interrupt).

PARAM
Parameterize input from terminal (or a supplied
string).

PROMPT Issue prompt and call PARAM to process reply.

PROMPTX
Issue prompt and retrieve reply (up to 64
characters) without parameterization.

PROMPTX8
Issue prompt and retrieve reply (up to 72
characters) without parameterization.

ROLL
Roll terminal display up one line and output one
line on bottom row.

ROLLPT
Set roll point (number of lines to freeze at top of
screen) for ROLL subroutine.

TEXT
Read line of input from terminal (up to 64
characters) without parameterization.

TEXT80
Read line of input from terminal (up to 72
characters) without parameterization.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 137

Function Key Input

When a function key or MSG WAIT is pressed, absolutely no data is
transmitted from the terminal.

To allow programs to properly process function keys, TIP translates the
function key notification into a string of four characters when input is
solicited by calling the Line-oriented subroutines (PROMPT, BREAK etc).

The program receives four characters in the input area (the remainder of
the area is cleared to spaces). The first two characters are always "F#".

The next two characters are digits representing the function key number,
for example:

 a value of F#00 represents MSG WAIT

 a value of F#01 represents F1

 a value of F#02 represents F2

 ...and so on.

Some terminals may be configured via a hardware or software option to
signal the host computer when the terminal is reset or powered on. This is
called a "Power On Confidence" signal - or POC. The signal to the host (if
such a signal is received) is translated by TIP into the pseudo function
key F23.

BREAK - Check For Operator Break

The BREAK subroutine checks for input that is already available from the
terminal. This subroutine is often called to check whether or not the
terminal operator has pressed the MSG WAIT key, a function key or the
XMIT key to interrupt continuous ROLLed.

If an input message is not available from the terminal, the BREAK
subroutine clears the result area to spaces and returns control to the
calling program.

If an input message is pending at the time the program calls BREAK, the
BREAK subroutine reads the input and discards it. BREAK next prompts
the terminal operator with a standard TIP "break message":

Continue?►Yes ►No

The cursor is left in the "Yes" field, since this subroutine is often used as a
mechanism to temporarily pause an otherwise continuous stream of
output messages.

When the terminal operator responds, the reply is parameterized into the
area specified as the first parameter to the BREAK subroutine.

Syntax:

CALL "BREAK" USING param-area

TIP Programming Reference

138 Proprietary IP-622

Where:

param- area
An area - PIC X(64) - that receives the reply to the
continuation query if there was an unsolicited interruption
by the terminal user. This area is interpreted as eight
occurrences of PIC X(8) - see also PARAM Parameterize
Data for more information.

 See Function Key Input on page 137 for a description of
how function keys are returned.

Warning: The programmer must be careful to avoid a classic
programming blunder; namely, assuming that the absence of "N" in the
first position of the reply implies YES. In fact, if a function key was
pressed, the first character of the result will be "F" (see Function Key
Input).

Furthermore, the terminal operator could transmit anything - the program
should carefully examine the result field and decide whether or not the
terminal operator has correctly "interrupted" whatever processing is taking
place.

PARAM - Parameterize Data

This subroutine takes an input string and breaks it into as many as eight
fields of up to eight bytes each.

The input string may be a field supplied by the program or the program
may choose to have PARAM prompt the terminal user for up to 80
characters of input.

PARAM recognizes the following characters as a single delimiter between
fields:

 comma

 slash

 single space

 multiple consecutive spaces

 equal sign

If an optional second parameter is supplied, it is assumed to be the name
of a 72-byte data area to be parameterized; otherwise, input is solicited
from the terminal.

If input is solicited from the terminal all communications characters (DICE
codes and FCC sequences) are removed from the input data before
parameterization is performed.

Each alphanumeric parameter is:

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 139

 translated to uppercase

 left justified

 space padded on the right to a maximum of eight characters.

Each strictly numeric parameter (a parameter which consists of digits
only) is: right justified with leading zeros to a maximum of 8 characters.

See Function Key Input for a description of how function keys are
returned when input is obtained from the terminal.

Syntax:

CALL "PARAM" USING param-area

 [text-area]

Where:

param-area
The name of a 64-byte area to receive the parameterized
data.

text-area
Optional input to the PARAM subroutine.

 TEXT-AREA is a 72-byte field that is parameterized. If this
parameter is omitted, up to 80 characters of input are
solicited from the terminal and parameterized into
"PARAM-AREA".

Example:

05 PARAM-AREA.

 10 PARAM OCCURS 8 TIMES PIC X(8).

05 TEXT-AREA PIC X(64).

The following table illustrates various input strings and the appearance of
the PARAM-AREA after a call to PARAM. Double quotes in the table are
present only to clearly delimit the strings; trailing parameters are not
shown (they are spaces in each case):

TEXT-AREA PARAM-AREA

"DR. John Smith III"

DR.

JOHN

SMITH

III

"TSPUPDT 123/x PRINT"
TSPUPDT

00000123

TIP Programming Reference

140 Proprietary IP-622

TEXT-AREA PARAM-AREA

X

PRINT

PROMPT - Prompt Terminal for Reply

The PROMPT subroutine "rolls" the terminal display up one line and
outputs a single line prompt on the bottom line of the terminal. PROMPT
then calls the PARAM subroutine (already described) to wait for and
parameterize the terminal operator's reply. The calling program may
provide an optional parameter that is used as the text of the prompt or
may permit PROMPT to construct default prompt text.

If the prompt text is not provided, PROMPT constructs a prompt that
consists of the transaction name, followed by the current execution stack
level, a question mark and an SOE (►) character:

msgar(1)?►

Syntax:

CALL "PROMPT" USING param-area

 [prompt-str]

Where:

param-area
The 64-byte area where the parameterized terminal input
is placed. Alphabetic data will be translated to uppercase.

 See Function Key Input on page 137 for a description of
how function keys are returned.

prompt-str
Optional parameter; 80 character prompt string.

 If this parameter is supplied, this string (up to the last non-
blank character) is used as the prompt text.

 The terminal operator has only the remainder of the line to
enter the response to the prompt, since prompts are output
on the last line of the terminal.

 If the program supplies a prompt string, either the first or
the last non-blank character may be specified as a
backslash character ("\"). In either case, when the prompt
is output to the terminal the backslash is replaced by a
start of entry character (►)

PROMPT recognizes two "special" trailing strings:

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 141

 "\YES \NO " (exactly 11 characters, all upper case)

 "\NO \YES " (exactly 11 characters, all upper case)

In each of the above cases the PROMPT subroutine does the following:

 converts the 11 character strings into YES/NO or NO/YES style
prompts

 replaces backslash characters with a start of entry character (►)

 translates the words YES and NO (uppercase!) into "Yes" and "No".

The two spaces after each word are replaced by a TAB stop and a single
space and the cursor is placed (by default) after the first choice (hence,
the need for both variations!).

Example:

WORKING-STORAGE SECTION.

77 QUESTION PICTURE X(80)

 VALUE "Enter last name: \".

 ...

LINKAGE SECTION.

 ...

01 WORK-AREA.

 05 REPLY-AREA PICTURE X(64).

 ...

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK-AREA.

 ...

 CALL "PROMPT" USING REPLY-AREA

 QUESTION

This type of prompt (and an example reply) appears as follows to the
terminal operator:

Enter last name: ►Smith

In this instance, the field REPLY-AREA would contain "SMITH" followed
by 59 spaces.

Additional Considerations:

 The PROMPT subroutine does not directly modify the prompt string
provided by the program - PROMPT constructs the appropriate
prompt string elsewhere (in a work area outside the domain of the
calling program).

PROMPTX - Prompt for Text

PROMPTX is identical to the PROMPT subroutine described in the
previous section, with one exception: PROMPTX does not parameterize
the user's input!

TIP Programming Reference

142 Proprietary IP-622

Up to 64 bytes of the input message are stored in TEXT-AREA (without
parameterization). PROMPTX performs uppercase alphabetic translation
if uppercase translation is enabled for the transaction.

Syntax:

CALL "PROMPTX" USING text-area

 [prompt-str]

Where:

text-area
The 64-byte area where the un-parameterized terminal
input is placed.

 See Function Key Input on page 137 for a description of
how function keys are returned

prompt-str
Optional parameter; 80-character prompt string.

 If this parameter is supplied, this string (up to the last non-
blank character) is used as a prompt.

Additional Considerations:

 See PROMPT Prompt Terminal for Reply for additional details.

PROMPTX8 - Prompt for Text

PROMPTX8 is identical to the PROMPT subroutine described in a
previous section, with the following two exceptions:

 PROMPTX8 does not parameterize the user's input.

 Up to 72 bytes of text from the input message are returned.

Although the receiving area must be defined as an 80-byte area, no more
than 72 bytes will be returned. PROMPTX8 performs uppercase
alphabetic translation if uppercase translation is enabled for the
transaction.

Syntax:

CALL "PROMPTX8" USING text-area

 [prompt-str]

Where:

text-area
The 80-byte area where the un-parameterized terminal
input is placed.

 See Function Key Input on page 137 for a description of
how function keys are returned

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 143

prompt-str
Optional parameter; 80 character prompt string.

 If this parameter is supplied, this string (up to the last non-
blank character) is used as a prompt.

Additional Considerations:

 See PROMPT Prompt Terminal for Reply for details.

ROLL - Output Line & Roll Screen

ROLL scrolls the screen up one line and sends one 80-byte line from
TEXT-AREA to the bottom line of the terminal. If a second parameter is
specified, ROLL automatically uses that parameter to call the "BREAK"
subroutine (see description earlier) after the line is output to the terminal.

If the optional second parameter is not specified, the program will not be
notified if terminal input is pending after this call to "ROLL".

Syntax:

CALL "ROLL" USING line

 [param-area]

Where:

line
An 80-byte text area to be rolled on the terminal. This text
is not translated into uppercase by the ROLL subroutine.

param-area
Optional field used to return result from call to the
"BREAK" subroutine.

Example:

WORKING-STORAGE SECTION.

77 HDG-LINE PICTURE X(80)

 VALUE " Amount Tax Total".

 ...

LINKAGE SECTION.

 ...

 05 DETL-LINE.

 10 DETL-AMT PICTURE ZZZ,ZZ9.99.

 10 FILLER PICTURE X(3).

 10 DETL-TAX PICTURE Z,ZZ9.99.

 10 FILLER PICTURE X(3).

 10 DETL-TOTAL PICTURE Z,ZZZ,ZZ9.99.

 10 FILLER PICTURE X(44).

 ...

 CALL "ROLL" USING HDG-LINE

TIP Programming Reference

144 Proprietary IP-622

 MOVE SPACES TO DETL-LINE

 MOVE 1000 TO DETL-AMT

 MOVE 70 TO DETL-TAX

 MOVE 1070 TO DETL-TOTAL

 CALL "ROLL" USING DETL-LINE

Additional Considerations:

 An important alternative to the use of ROLL is to use TIPPRINT to
output data to the terminal (special destination AUX0). See the
description of the TIPPRINT subroutine in the File Control System
(FCS) chapter of this reference manual.

 If ROLL is called by a background program initiated from an
interactive user, the output is sent back to the originator.

 If ROLL is called by a background program initiated from system
startup, the output is sent to the console.

ROLLPT - Set Terminal Roll Point

The subroutines ROLL, PROMPT, PROMPTX, PROMPTX8 and BREAK
all roll the terminal display from bottom to top - the top lines roll off the
screen as new lines appear on the bottom line. The default is to roll the
entire display.

To retain a portion of the display on the screen, the program may call this
subroutine to define a new "roll point".

Syntax:

CALL "ROLLPT" USING roll-point

Where:

roll-point
The new roll point for the terminal.

 This field is a binary halfword representing the number of
lines to "freeze" at the top of the terminal.

 If this field contains a value of zero, the terminal roll point is
reset to the default state - no lines are frozen.

Example:

77 FREEZE-4 PICTURE S9(3)

 BINARY VALUE 4.

...

 CALL "ROLLPT" USING FREEZE-4

Using a value of four (as in the example above) causes the top four lines
of the display to remain on the screen while the lower lines are rolled as
necessary.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 145

This technique may be used to freeze information (such as headings) on
the screen while detail lines are ROLLed out underneath.

TEXT - Get One Line From Terminal

The TEXT subroutine retrieves an input message of up to 64 characters
without parameterization. It is assumed that the program has already
output whatever information is to be used as a prompt; otherwise the
terminal operator may not know that input is required!

Alphabetic characters in the data are translated to uppercase.

Syntax:

CALL "TEXT" USING text-area

Where:

text-area
The 64-byte area where the terminal input is to be placed.

 See Function Key Input on page 137 for a description of
how function keys are returned

Example:

05 TEXT-AREA PICTURE X(64).

...

CALL "TEXT" USING TEXT-AREA

TEXT80 - Get One Line From Terminal

TEXT80 is similar to the TEXT subroutine described in the previous
section, except that up to 72 characters are retrieved and no
parameterization is performed.

Alphabetic characters in the data are translated to uppercase.

Syntax:

CALL "TEXT80" USING text-area

Where:

text-area
An 80-byte area where the terminal input is to be placed
(without parameterization).

 This field must be defined as 80 bytes, but no more than
72 bytes of terminal data are returned

TIP Programming Reference

146 Proprietary IP-622

 See Function Key Input on page 137 for a description of
how function keys are returned

Example:

05 TEXT-AREA PICTURE X(80).

...

CALL "TEXT80" USING TEXT-AREA

Direct Communications I/O

Direct Communications I/O

TIP provides facilities that an online program may use to directly interface
with the host computer communications sub-system. This Direct
Communication I/O interface is at a primitive level - that is, it is the
responsibility of the program to generate the proper control information for
the devices being manipulated.

With Direct Communications I/O, the program interfaces with the
operating system communications control code via calls to a TIP
subroutine named "TIPTERM".

The program is responsible for:

 Issuing messages

 Including the proper control codes to produce the desired effect at the
terminal.

The program must also decode all input messages and, if necessary, be
prepared to filter out any imbedded terminal-dependent control codes.

Direct communication I/O is provided for relatively rare instances where
the program requires direct control of a terminal or a device. Applications
should take advantage of the extensive display handling capabilities of
the Message Control System (MCS) and use DCIO only when the
requirements cannot otherwise be met.

Message Formats

All input and output messages must begin with a fixed-format message
prefix.

COBOL copybooks TC-DCINP and TC-DCOUT define the message
prefixes in a COBOL program.

Each copybook defines a standard message prefix, with one exception -
an extra fullword added at the beginning of each prefix is used only by
TIP.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 147

TC-DCINP copybook

The layout of the input message area is provided by the COBOL copy
book TC-DCINP:

COPY TC-DCINP.

* COPY ELEMENT FOR DCIO INPUT PACKET *

 05 DCIO-INP-PKT.

 10 FILLER PICTURE 9(8) BINARY SYNC.

 10 FILLER PICTURE X(20).

 05 DCIO-INP-PKTR REDEFINES DCIO-INP-PKT.

 10 DCIO-INP-STATUS PICTURE X.

 88 DCIO-INP-GOOD VALUE SPACE.

 88 DCIO-INP-NOT-AVAIL VALUE "E".

 88 DCIO-INP-TRUNC VALUE "E".

 88 DCIO-INP-FKEY VALUE "F".

 10 FILLER PICTURE X.

 10 DCIO-INP-BUF-LEN PICTURE 9(4) BINARY SYNC.

 10 DCIO-INP-COUNT PICTURE 9(4) BINARY SYNC.

 10 FILLER PICTURE X(2).

 10 DCIO-INP-TERM-ID PICTURE X(4).

 10 FILLER PICTURE X(4).

 10 FILLER PICTURE X(4).

 10 FILLER PICTURE X(4).

 05 DCIO-INP-DATA.

* USER INPUT DATA LAYOUT FOLLOWS *

The following is a description of the fields that make up the DCIO input
packet:

DCIO-INP-STATUS
This field is set to the appropriate status after calling
TIPTERM with an input function.

 Check this field to determine the status after calling
TIPTERM with an input function.

DCIO-INP-BUF-LEN
This field must be set to the length of the data area that is
reserved by the program after the group item "DCIO-INP-
DATA". In effect, the byte count placed in this field
represents the maximum size of the largest input message
that the program is willing to read into that area.

 If the input message from the terminal exceeds this value
TIP writes a message to the console that indicates that
"Truncated Input" occurred at the noted terminal.

DCIO-INP-COUNT
On return to a call to TIPTERM with a "read input" function,
this field is set to the exact byte count of the input data that
is placed in DCIO-OUT-DATA.

TIP Programming Reference

148 Proprietary IP-622

DCIO-INP-TERM-ID
On return from a call to TIPTERM, this field is set to the
name of the terminal that generated the input. This is
normally the same as the terminal that is running the
program.

DCIO-INP-DATA
This hanging group item is the last line of the copybook.
The intention is that the programmer codes (immediately
following this) whatever elementary items are needed to
allow the program to examine the input message(s).

TC-DCOUT
The layout of the output message area is provided by the
COBOL copy book TC-DCOUT:

TC-DCOUT copybook

COPY TC-DCOUT.

* copybook FOR DCIO OUTPUT PACKET *

 05 DCIO-OUT-PKT.

 10 FILLER PICTURE 9(8)

 BINARY SYNC.

 10 FILLER PICTURE X(16).

 05 DCIO-OUT-PKTR REDEFINES DCIO-OUT-PKT.

 10 DCIO-OUT-STATUS PICTURE X.

 88 DCIO-OUT-GOOD VALUE SPACE.

 88 DCIO-OUT-LINE-DOWN VALUE "B".

 88 DCIO-OUT-TERM-DOWN VALUE "C".

 88 DCIO-OUT-INV-DEST VALUE "D".

 88 DCIO-OUT-NO-BUF VALUE "E".

 88 DCIO-OUT-IO-ERR VALUE "F".

 88 DCIO-OUT-INVALID-LEN VALUE "G".

 88 DCIO-OUT-NOT-CONN VALUE "N".

 88 DCIO-OUT-AUX-DOWN VALUE "0".

 88 DCIO-OUT-NOT-OP VALUE "1".

 88 DCIO-OUT-PAPER-OUT VALUE "2".

 88 DCIO-OUT-EOF VALUE "3".

 88 DCIO-OUT-NO-RESP VALUE "4".

 10 FILLER PICTURE X(7).

 10 DCIO-OUT-TERM-ID PICTURE X(4).

 10 FILLER PICTURE X(4).

 10 DCIO-OUT-AUX-FLD PICTURE 9(4)

 BINARY SYNC.

 10 DCIO-OUT-AUXR REDEFINES DCIO-OUT-AUX-FLD.

 15 DCIO-OUT-AUX-FUNC PICTURE X.

 15 DCIO-OUT-AUX-DVC PICTURE X.

 10 DCIO-OUT-COUNT PICTURE 9(4)

 BINARY SYNC.

 05 DCIO-OUT-DATA.

* USER OUTPUT DATA LAYOUT FOLLOWS *

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 149

The following is a description of the fields that make up the DCIO output
packet:

DCIO-OUT-STATUS
This field is set to the appropriate status when a call is
issued to TIPTERM with an output function.

 Check this field to determine the status after calling
TIPTERM with an output function. The status in PIB-

STATUS field may indicate PIB-GOOD that status
reflects the fact that TIP accepted the output. The result
returned in DCIO-OUT-STATUS represents the output
delivery status.

DCIO-OUT-TERM-ID
This field must be set to the name of the desired output
terminal. If it is low-values or spaces, TIPTERM assumes
that output is to be sent to the terminal where the program
is running.

DCIO-OUT-AUX-FUNC
This field may be set to the desired auxiliary function code.

DCIO-OUT-AUX-DVC
This field may be set to the desired auxiliary device
number. In general, a binary value is placed here (that is:
X'01' for AUX1 and so on).

DCIO-OUT-COUNT
This field must be set to the byte count of the output
message data. The count includes any control codes that
are imbedded in the text of the message

DCIO-OUT-DATA
This hanging group item is the last line of the copybook.
The intention is that the programmer codes (immediately
following this line) the elementary items that are need for
the program to construct the desired output message text.

TIPTERM Functions

User programs request direct terminal I/O services by calling the supplied
subroutine TIPTERM with parameters indicating the desired function and,
for most functions, the appropriate input or output message area.

Syntax:

CALL "TIPTERM" USING func

 [msgarea]

TIP Programming Reference

150 Proprietary IP-622

Where:

func
The desired TIPTERM function code. See the Copy book
(TC-DCIO) described below. This parameter is required for
all calls to TIPTERM.

msgarea
This optional parameter references either an input
message packet (as defined by the Copy book TC-DCINP)
or an output message packet (as defined by the Copy
book TC-DCOUT). The choice depends on whether or not
the associated TIPTERM function code implies reading or
writing data.

COBOL programs use the supplied copy books TC-DCINP and TC-
DCOUT to define the appropriate message areas. These copy books are
shown and described in the preceding section.

TC-DCIO Copy Book

COBOL programs also should include the following supplied copy book in
the WORKING-STORAGE section of the program to define the
corresponding function codes for calls to TIPTERM:

* TC-DCIO COPY BOOK FOR TIP/30 DCIO TERMINAL CONTROL

* THE FOLLOWING ITEMS ARE TIPTERM FUNCTION CODES *

 05 T-GET PICTURE X VALUE "G".

 05 T-PUT PICTURE X VALUE "P".

 05 T-TEST PICTURE X VALUE "W".

 05 T-UN PICTURE X VALUE "U".

T-GET - Get Input

The TIPTERM T-GET function reads input from the terminal.

Syntax:

MOVE ?? TO PIB-WAIT-TIME

MOVE ?? TO DCIO-INP-BUF-LEN

CALL "TIPTERM" USING T-GET

 DCIO-INP-PKT

Where:

T-GET
Function code defined in the TC-DCIO copy book.

DCIO-INP-PKT
The I/O input packet defined in the TC-DCINP copy book.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 151

PIB-WAIT-TIME
If necessary, the program may move a value to the field
PIB-WAIT-TIME to instruct the TIPTERM subroutine to
wait for an input message for no longer than the specified
number of seconds.

 If a non-zero value is provided in PIB-WAIT-TIME the PIB-
STATUS field is set to "PIB-MSG-AVAIL" or "PIB-TIMED-
OUT" status as appropriate. See the description of the field
PIB-WAIT-TIME.

DCIO-INP-BUF-LEN
Prior to the call to TIPTERM with the T-GET function, the
input message packet must be initialized. In particular, the
field DCIO-INP-BUF-LEN must be set to the maximum
number of bytes that the program is willing to read from the
terminal. This value cannot exceed the number of bytes of
space reserved after the TC-DCINP copy book - recall that
the last line of that copy book was a group item.

 There are often occasions when the program moves a
smaller value into the field to avoid reading excess data
when a small input message is expected.

 This situation is exactly the scenario for the "Input
Truncated" warning that sometimes occurs. For example,
the program outputs a simple prompt at the top of the
terminal, expects a YES or NO reply and moves say, 80, to
the input buffer length. The terminal operator keys in "NO"
but places the cursor in the bottom right of the screen,
presses <key t="XMIT"} and sends more than 1900 bytes
in as an input message.

 The result: the input is duly truncated and noted on the
console by TIP and the program continues with no more
than the requested 80 characters.

Additional Considerations:

 After control returns from the call, the input data (if any) is placed in
the area DCIO-INP-DATA and the number of bytes actually received
is placed in the field DCIO-INP-COUNT.

 The program must be aware that the data received likely contains
DICE codes, FCC sequences, DATA characters etc. The program is
responsible for filtering through all of the various bits of data that
arrive.

 The program must take care to observe the byte count in the field
provided for that purpose.

Error Conditions:

STATUS Description

TIP Programming Reference

152 Proprietary IP-622

STATUS Description

DCIO-INP-FKEY
Function key received. First byte of DCIO-
INP-DATA is function key code (see note
which follows).

DCIO-INP-GOOD Input message received ok.

DCIO-INP-TRUNC
Truncated input. Input Message Area was
smaller than input message.

 When a function key is pressed, the first byte of the DCIO-INP-DATA
field contains the code representing the function key. These codes are
exactly the same codes that are used by the Message Control System
(MCS) to encode function keys in the field MCS-STATUS; namely, 0
(zero) means MSG WAIT and a value of 1 means F1 etc.

 Warning: NO DATA from the terminal screen is returned when MSG
WAIT or a function key is pressed.

T-PUT - Output Message

The TIPTERM T-PUT function is used to output a message to a terminal.
If required, the message data may include appropriate cursor positioning
control codes (DICE) and possibly Field Control Characters (FCC).

Syntax:

MOVE “????” TO DCIO-OUT-DATA

MOVE ?? TO DCIO-OUT-COUNT

MOVE SPACES TO DCIO-OUT-TERM-ID

CALL "TIPTERM"USING T-PUT

 DCIO-OUT-PKT

Where:

T-PUT
Function code defined in the TC-DCIO copy book.

DCIO-OUT-PKT
The output packet defined in the TC-DCOUT copy book.

DCIO-OUT-COUNT
The count of the number of bytes to be output must be
moved into the field DCIO-OUT-COUNT before issuing this
call. This count includes control characters such as DICE
codes, FCC characters etc.

DCIO-OUT-DATA
The data bytes to be output must be moved into the group
item DCIO-OUT-DATA before issuing this call. Normally
this group item is defined and redefined to accommodate

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 153

many different types of output messages that the program
might emit.

DCIO-OUT-TERM-ID
The field DCIO-OUT-TERM-ID may be set to the terminal
name of the intended destination terminal. If this field is
invalid, output is sent to the terminal where the program is
running.

Example:

The following output message can be used to home the cursor and clear
the screen:

MOVE ='1001010127D4' TO DCIO-OUT-DATA

MOVE 6 TO DCIO-OUT-COUNT

CALL "TIPTERM"USING T-PUT

 DCIO-OUT-PKT

The hexadecimal sequence ='10010101' is a DICE code sequence to
position the cursor (1001) at row and column 1,1 (0101). The hex value
27 represents the code for ESC and hex D4 represents an "M". ESC-M,
when sent to a UNISCOPE terminal, causes the terminal to perform the
CLEAR PROTECTED function (clear all unprotected and protected data).

The programming manuals for the various terminal types contain this type
of detailed information about controlling the terminal.

T-TEST - Test For Input

The TIPTERM function T-TEST allows the program to determine whether
input has occurred. Pressing MSG WAIT or XMIT or some function key is
sometimes used as a "break" signal for programs that generate
continuing output. By periodically issuing a call to TIPTERM with the T-
TEST function, the program can, in effect, "listen" for input from the
terminal (and may choose to interpret the arrival of such an input
message as a signal to stop output).

For example, a program that displays data from a file may generate many
lines of output (by rolling the screen). By testing for input after every few
lines of output the program can determine if input had been generated (if
the operator presses MSG WAIT for example) and send a message to
the operator to ask if continuation is desired.

Syntax:

MOVE ?? TO DCIO-INP-BUF-LEN

CALL "TIPTERM" USING T-TEST

 DCIO-INP-PKT

Where:

T-TEST
Function code defined in the TC-DCIO copy book.

TIP Programming Reference

154 Proprietary IP-622

DCIO-INP-PKT
The I/O input packet defined in the TC-DCINP copy book.

DCIO-INP-BUF-LEN
Prior to the call to TIPTERM with the T-TEST function, the
input message packet must be initialized. The field DCIO-
INP-BUF-LEN must be set to the maximum number of
bytes that the program is willing to read from the terminal.
This value cannot exceed the number of bytes of space
reserved after the TC-DCINP copy book - recall that the
last line of that copy book is a group item.

 See the description of this field in the discussion of the T-
GET function code above.

Additional Considerations:

 After the call is completed, the program must check the status to
determine if a message was available and was read. The T-TEST
function does not wait for input; it reads an input message if one is
available.

Paging API

Introduction to Terminal Paging

TIP provides paging, an efficient way to save screens (pages) into a file,
and access them. Each page contains all the information necessary to
repaint a full screen including the data. We provide a paging transaction,
tippager, which enables you to browse through the paging file. This
browsing transaction runs as a separate program. For details, see the TIP
Utilities manual.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 155

 Figure 1: Architectural Overview

The paging API is called TIPPAGE. The screens are saved and retrieved
in MCS formats. User applications must call FCS-OPEN before starting to
page. TIP opens a paging file for that particular session, and the file is
created if necessary. From then onwards every paging call will reference
that file. The interface for the native TIP paging functions and the paging
processor is discussed in the following sections.

Paging File

TIP creates paging files on a per TIP-session basis. As the sessions
open, their corresponding paging files are created. These files are deleted
as the associated TIP sessions end. The maximum length of a given
paging file depends on two configurable parameters: page size, and
number of pages per session. These parameters are configurable at boot
time. By default, a session is limited to 20 pages in all and every page is
4K in size

Paging File Names

The paging file is created in the TIPSRC/tmpwrk directory under the
name ―page.sess#‖ where the extension to the file is a session number.
For example: page.2536. This ensures a unique paging file name for
every session.

TIPPAGE Paging API

The main interface consists of a subroutine called TIPPAGE. You pass
the function to be performed to TIPPAGE as a parameter along with any

TIP Programming Reference

156 Proprietary IP-622

other required arguments. Thus a call to open a paging file in COBOL
looks like this:

Syntax:

CALL “TIPPAGE” USING FCS-OPEN

 FILE-LFN

The supported functions are tabulated below.

Parameter 1

(Function)
Parameter 2 Parameter 3 Parameter 4

FCS-OPEN FILE-LFN

FCS-CLOSE FILE-LFN

FCS-ADD FILE-LFN MCS

FCS-PUT FILE-LFN MCS PAGE-NUM

FCS-GET FILE-LFN MCS PAGE-NUM

FCS-DELETE FILE-LFN

FCS-GETRN FILE-LFN
PAGE-
STATUS-
BUFFER

FCS-ACCESS FILE-LFN

Common Parameters

As one can see from the above table there are three common data
structures used by the above functions. These data structures are
explained here:

FILE-LFN:

This data structure is used to hold the return status of the function call. It
consists of 9 bytes of data; the 9th byte contains the status code. The first
8 bytes are reserved for the logical file name and are not used by the
TIPPAGE. A value other than STS-GOOD in the FILE-STS field indicates
an error. This data structure is used by every function call listed here and
therefore, its explanation will not be repeated in the following calls.

05 FILE-LFN PICTURE X(9).

05 FILLER REDEFINES FILE-LFN.

 07 FILE-NAME PICTURE X(8).

 07 FILE-STATUS PICTURE X(1).

 88 STS-GOOD VALUE " ".

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 157

MCS:

This is a pointer to the MCS screen header and the data. The header
contains information such as the name of the screen and the size of the
screen data etc. A copy book TC-MCS is provided for application
programmers. For detailed explanation on MCS structure, see the MCS
section in the ―TIP Programming Reference‖.

PAGE-NUM:

It is a four byte field and contains the page number in COBOL format.

01 PAGE-NUM PIC 9(9) COMP.

PAGE-STATUS-BUFFER:

This structure is used to return the status of the paging file. The size of
this structure is 20 bytes and it contains information such as the number
of data pages in the paging file, the current page number, and the
maximum number of pages allowed etc. The structure is shown below.

01 PAGE-STATUS-BUFFER.

 10 STORED-DATA-PAGES PICTURE 9(9) COMP.

 10 CURRENT-PAGE-NUMBER PICTURE 9(9) COMP.

 10 STORED-INDEX-PAGES PICTURE 9(9) COMP.

 10 MAX-DATA-PAGES PICTURE 9(9) COMP.

 10 MAX-INDEX-PAGES PICTURE 9(9) COMP.

Function Calls

A detailed explanation of the function calls is given below.

FCS-OPEN

Open a paging file for the current session.

Syntax:

CALL “TIPPAGE” USING FCS-OPEN

 file-lfn

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-lfn
Return status of the function call.

This must be the very first call made by the user to start paging. It opens
a paging file on per session basis. If necessary, the file is created. Then it
is initialized.

TIP Programming Reference

158 Proprietary IP-622

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-CLOSE

Close the paging file.

Syntax:

CALL “TIPPAGE” USING FCS-CLOSE

 file-lfn

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-lfn
Return status of the function call.

This function closes the paging file. It also sets a flag in the paging file‘s
header called ―stopPaging‖. This stops any other transaction writing into
the paging file. This flag can only be cleared by the FCS-DELETE call.

Any paging function call trying to write or update a page after the FCS-
CLOSE call will return an error. This function should only be called when
no more paging is expected in the current session. If the paging is
resumed using FCS-DELETE, all the previous data stored in the file is
lost.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-ADD

Appends an MCS screen page to the paging file.

Syntax:

CALL “TIPPAGE” USING FCS-ADD

 file-lfn

 mcs

Where:

FCS-ADD
Function code from the TC-FCS copybook.

file-lfn
Return status of the function call.

mcs The mcs interface packet.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 159

The MCS address points to the screen information (including the data) to
be written. It is an error to write a page beyond the maximum allowable
limit of DPSMAXPAGES.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-PUT

Updates a page already written in the paging file.

Syntax:

CALL “TIPPAGE” USING FCS-PUT

 file-lfn

 mcs

 page-num

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-lfn
Return status of the function call.

mcs The mcs interface packet.

page-num
The page number in the paging file.

The new page of information is pointed by the MCS, which includes data
for the screen. The PAGE-NUM contains the page number to be over
written. The page number must be within the range 1 to STORED-DATA-
PAGES.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-GET

Retrieve an MCS screen full of information from the paging file.

Syntax:

CALL “TIPPAGE” USING FCS-GET

 file-lfn

 mcs

 page-num

Where:

FCS-GET
Function code from the TC-FCS copybook.

TIP Programming Reference

160 Proprietary IP-622

file-lfn
Return status of the function call.

mcs The mcs interface packet.

page-num
 The page number in the paging file.

The screen is retrieved into the area pointed by the MCS. The page to be
retrieved is specified as a PAGE-NUM. The page number must represent
one of the pages already stored i.e. it must be within the range of 1 to
STORED-DATA-PAGES.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-DELETE

Delete all pages from the paging file and reinitialize the file header.

Syntax:

CALL “TIPPAGE” USING FCS-DELETE

 file-lfn

Where:

FCS-DELETE
Function code from the TC-FCS copybook.

file-lfn
Return status of the function call.

The file remains open and accessible to the user program or any
following transactions.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

FCS-GETRN

Get the status record from the paging file.

Syntax:

CALL “TIPPAGE” USING FCS-GETRN

 file-lfn

 page-status-buffer

Where:

FCS-GETRN
Function code from the TC-FCS copybook.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 161

file-lfn
Return status of the function call.

page-status-buffer
Status buffer of the paging file as outlined above.

The status record contains information such as the current page number,
the data pages stored, the maximum data pages allowed etc. See the
description of the PAGE-STATUS-BUFFER above.

A status condition of other than STS-GOOD in the FILE-LFN indicates a
failure.

TIP Programming Reference

162 Proprietary IP-622

File Control System (FCS)

This section describes the facilities of the TIP File Control System (FCS).
FCS is the TIP component that provides the interface between
transaction programs and data files.

FCS Overview

FCS and Program Access

FCS allows transaction programs to access:

 Standard indexed and relative record files and sequential files

 Standard libraries (directories)

 TIP dynamic files (files used on demand)

 TIP edit buffers.

Interface Level

The interface is implemented at the subroutine call level all requests for
file services call a supplied subroutine with appropriate parameters
describing the required information.

TIP supports multiple FCS server processes to distribute I/O loads.

TIPFCS

FCS is the interface between transaction programs and online files; it
provides services at the program "CALL" level. Programs call one
subroutine (TIPFCS), and provide parameters that select the desired
function and relevant file and record information.

Logical File Name

Programs refer to files by referencing a Logical File Name (LFN). The
LFN is the name by which the file is known to TIP. An entry in the TIP
definition relates a LFN to the actual physical file. All online files must
have an entry in the TIP definition.

TIP$SEC and TIP$SYS Entries

The TIP system file, TIP$SYS, contains entries that define each TIP data
file.

The TIP security file, TIP$SEC, contains entries for each TIP data file that
specify:

 The group ownership of the data file

 And the security level required to access the data file.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 163

Programs may only access files that are assigned to the program (either
by an explicit OPEN request to FCS or an implicit OPEN.

Active File Table

All files assigned to programs have entries in the Active File Table (AFT)
for the process. Files that have entries in the AFT are available (by
reference to the LFN) to all programs that are run by that process until
they are unassigned.

File Organizations Supported

FCS fully supports the following file organizations:

ISAM
Indexed Sequential Access Method. TIP supports indexed
files with up to 10 key fields. Thus, support for MIRAM
(Unisys System/80 environment) is included.

DAM
Direct Access Method (often referred to as relative files).

SAM
Sequential Access Method.

FCS also provides:

 The ability to access modules in a directory (similar in concept to a
library with elements or a partitioned data set on some mainframes).

 The capability of creating (on demand) TIP Dynamic Files

 The ability to access Edit Buffers.

Record Locking

A record locking feature maintains file integrity. Records being updated
are locked when read; locked records are unavailable to other processes
until they are released.

Journaling Online Files

A user may be journal on online file by specifying a TIP definition option.
This facility allows either before images or after images (or both) to be
written to the TIP journal file:

Before Images

 Before images are often used to roll back updates that were not

completed due to a hardware or software failure.

TIP Programming Reference

164 Proprietary IP-622

After Images

 After images can be used as audit trail information or applied to

backup files to reprocess updates in the event of a hardware or

software failure.

Dynamic Files

Dynamic files are direct access files that are managed by TIP. Programs
may create or erase dynamic files, as necessary.

Setting a File in Sequential Mode

In the online environment that TIP provides, transaction programs often

read indexed files in random mode that is, by providing a specific key of
the desired record.

FCS-SETL

When it is necessary for an online program to process an indexed file
sequentially, a special purpose call (FCS-SETL) is made to the TIP File
Control System to place the file in sequential mode. This technique is
analogous to the batch COBOL verb "START".

As a side effect of setting a file in sequential mode, the program normally
specifies a "starting point" by supplying a key value for one of the indices
of the file.

Once a file is set in sequential mode, each call to FCS with the read
request code can read forward and backward.

FCS-ESETL

When the program wishes to terminate sequential processing of a file,
another special purpose call is issued (FCS-ESETL) to return to random
processing mode.

Record Locking

It is generally accepted that two batch jobs should not simultaneously
update the same file. Similarly, online users should be protected from the
race conditions inherent in updating the same record at the same time.

Example:

To illustrate the problem, assume that JOE and TOM are working at
different terminals updating FILEX and there is no record locking
capability:

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 165

13. JOE displays record 500 intending to update it.

14. JOE is interrupted for a moment and TOM reads record 500, changes
it at his terminal and rewrites the record in the file.

15. JOE then changes the record and rewrites it in the file; overlaying
TOM's update and perhaps causing problems that may not appear
until much later.

With the record locking capability provided by FCS, this situation cannot
occur; the logical integrity of the updating process is maintained.

The TIP File Control System enforces the rule that a record to be updated
must first be read and a lock requested (function FCS-GETUP). When the
modification to the data is complete, the program may request a record
rewrite (FCS-PUT).

HOLD=YES - Simple Record Locking

Specify HOLD=YES in the TIP file definition to select simple record
locking. Specifying HOLD=YES implies that a program may lock a single
record (at a time) from this file.

If the program issues a FCS-PUT without locking the record via an FCS-
GETUP then the function status will be PIB-NOT-HELD and the FCS-PUT
is rejected. This record holding scheme does not provide for online roll

back of incomplete updates since there is only a single record involved,
the update is considered complete when the new record data is written.

HOLD=UP - Record Locking for Update

Specifying HOLD=UP in the TIP file definition parameters for a file allows
a program to lock more than one record for the file at a time. The lock on
each record remains in effect until that particular record is updated (via an
FCS-PUT) or until that record is released (via an FCS-NOUP). This
record holding scheme does not provide for online roll back.

This technique is often used in situations where there is a control record
for a file (for example record 1) and that control record contains a pointer
to "the next available" record.

Example:

 GETUP (rec #1)

 next available record from pointer in rec #1

 GETUP (next available record)

 move information to record area

 PUT (next available record)

 update next available pointer in rec #1

 PUT (rec #1)

If the system crashes at any point during this process, the control record
remains intact and the next available record is still the next available
record (although it may have different contents than it did before the
attempted update).

TIP Programming Reference

166 Proprietary IP-622

HOLD=TR - Record Locking for Transaction

Specifying HOLD=TR in the TIP file definition causes the TIP File Control
System to lock the records for that file for the duration of the transaction.

Also see the definition of transaction end in the Program Control System
(PCS) section of this document.

This record locking scheme allows a program to lock several records for
this file at one time. A program that receives a "held" status for a record in
a file defined as HOLD=TR can retry the FCS-GETUP. TIP does not
release any locks if an FCS-GETUP to a HOLD=TR file fails with a PIB-
HELD status.

TIPFCS writes a "quick before image" of an updated record to the
TIPIX.QBL file. TIP uses these quick before images to roll back the record
if the transaction does not complete normally.

A user program can request a rollback of record updates since the last
transaction end (commit point) by setting the PIB-LOCK-INDICATOR to
"O" and issuing a CALL to FCS-TREN (see PIB-LOCK-INDICATOR in the
Program Control System section).

Record Locking Summary

The table below compares the record locking schemes that are supported
by TIP.

 HOLD=YES HOLD=UP HOLD=TR

Roll back
Capability?

NO NO YES

Hold Multiple
Records per
File?

NO YES YES

When
Records
Released?

Update, or
NOUP, or
next GETUP or
FCS-CLOSE*

Update, or
NOUP, or
FCS-CLOSE

TREN, or
FCS-CLOSE*

Release on
PIB-HELD
Status?

YES NO NO

Possible
Deadlock?

NO YES YES

 Note: If an ―H‖ is moved to the PIB-LOCK-INDICATOR before an FCS-CLOSE
is performed, the file lock will be held.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 167

Call TIPFCS - Common Parameters

Calls to TIPFCS must pass certain parameters. The first parameter is
always a function code. The parameters after the first generally follow the
format shown below, although there are a few minor exceptions as noted
in the documentation:

Syntax:

CALL "TIPFCS" USING function

 [file-pkt]

 [record-area]

 [key-value]

 [index-num]

Where:

Function
The TIPFCS function code. See the next section
describing the copy book TC-FCS from the TIP library.

 Warning: Passing an invalid function code to the TIPFCS
subroutine results in the PIB-FUNCTION error status.

file-pkt
The Logical file name packet. Must contain the logical file
name of the file (as it is defined in the TIP definition).

record-area
The record area. This area is where the data for a record is
placed for a read operation or where the data is obtained
for a write operation.

 The record area must be large enough to accommodate
the largest record for the particular file.

key-value
For an indexed file, this holds the record key. In some
cases, a partial key value (that is, some key prefix) may be
permitted.

 This parameter may be omitted (as documented) for some
functions. For a direct (or non-indexed) file this is a binary
fullword that holds the relative record number (i.e: PIC 9
BINARY).

index-num
For indexed files, this specifies the desired index number
(1 through 10 inclusive).

 Define this field as a binary halfword (PIC 999 BINARY). If
this parameter is omitted, the primary key for the file.
Determined from information supplied when the file is
defined via the SMFILE utility is assumed.

TIP Programming Reference

168 Proprietary IP-622

 Note: Throughout this document, references are made to the possibility of
omitting parameters when calling TIPFCS. The implication in all cases is
that a parameter may be omitted only if all following parameters are also
omitted.

This is a restriction imposed by the operating system each parameter
passed on a CALL statement is identified by an address pointer. The
called program (TIPFCS in this case) can only determine the end of the
parameter list that is passed. There is no convention to identify omitted
parameters.

File System Function Codes

The first parameter on every call to TIP FCS is a one-byte function code
that specifies the file system operation to be performed. A copybook, TC-
FCS, is supplied with TIP that COBOL programs can use to define the
function codes.

Include this copybook in the WORKING-STORAGE SECTION of the
COBOL program (the name selected for the 01 level item is not
particularly important):

FCS Interface Packets

Two packets are used to control processing of files through FCS:

 Logical File Name Packet

 File Descriptor Packet.

All calls to TIPFCS make use of a Logical File Name packet; only calls to
TIPFCS with the FCS-OPEN function use a File Descriptor Packet.

Logical File Name Packet

This is the primary control packet used for processing files. It consists of
two fields:

 An eight byte field containing the Logical File Name (LFN) assigned to
the file by the program. The value placed in this field is used to search
the information in the TIP definition to determine which physical file is
actually used by the program

 A one byte status field where FCS stores the completion status of the
last call to TIPFCS for the file. This status code is the same as that
returned in the PIB-STATUS field in the PIB.

Example of a Logical File Name Packet

05 PART-FILE.

 10 PART-LFN PICTURE X(8).

 10 PART-FILE-STATUS PICTURE X.

Example:

MOVE "PAYMAST" TO PART-FILE

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 169

CALL "TIPFCS" USING FCS-GET

 ...

This example moves the logical file name "PAYMAST" to the file name
packet before issuing a call to TIPFCS. FCS examines the logical file
name and uses that name to search information in the TIP definition to
associate the logical name with the physical name (the LFD).

Since TIPFCS modifies the status byte in this packet, the packet must be
placed in the program's LINKAGE SECTION area.

File Descriptor (FDES) Packet

This packet is used during a call to FCS using the FCS-OPEN function. It
establishes the relationship between a logical file name (LFN) and the
real file to which I/O is to be done.

A file descriptor packet is required to open TIP Dynamic Files, TIP Edit
Buffers, Library elements and, in situations where unusual processing is
desired (such as opening a file with read-only access).

Fields of the copybook TC-FDES are described below:

Field Purpose

FDES-user id

May contain the user id or Group name to which
the file belongs. If opening for:

Read
A complete search of the TIP
definition is done.

Output
Uses the specified value. If creating a
dynamic file, this is set to the callers'
user id.

FDES-CATALOG

Additional level of naming provided for dynamic
files. If left as spaces or low values, this field is
set to the FDES-FILE-NAME. FDES-CATALOG
is ignored in TIPix when dealing with Edit
buffers.

FDES-FILE-NAME

File name for dynamic files or the defined logical
file name for data management files. If left as
spaces or low values, this field is set to the
name in the logical file name packet (LFN).

FDES-PASSWORD

This field may be used to assign a password to
a TIP dynamic file or edit buffer. The password
is established at the time the dynamic file or edit
buffer is created; thereafter, all attempts to open
the file must supply the password. If this field is
spaces or low-values, no password is
established.

TIP Programming Reference

170 Proprietary IP-622

Field Purpose

FDES-FCS-CLASS

Class of opened file. If this field is a space or
low values, TIPFCS opens the first file that it can
find in the TIP definition with the supplied name.

E Edit Buffer.

P Permanent dynamic file.

S Data file.

T Temporary dynamic file.

FDES-FCS-TYPE

Designates type of file (or element) desired:

C Create new file.

E Open existing file.

(space)
Access if it exists or create if it does
not exist (dynamic files).

FDES-FCS-PERM

Designates type of file access:

R Read only.

W Write only

U Read/write.

(space) Read/write.

FDES-FCS-LOCK

For Edit Buffers and TIP Dynamic files, this field
may be set to a "Y" or "N" to indicate whether
exclusive use of the file is required. If this field is
not set to "Y", a value of "N" is assumed. PIB-
LOCKED status is returned if any other process
(online program) is using the Edit Buffer or
Dynamic File.

FCS Miscellaneous Functions

FCS-HOLD - Hold Resource

A program may use this function to place a user-defined value in the TIP
key-holding table. Using this feature, cooperating processes can use
some string of characters as a ―sentinel‖ to implement a queuing
mechanism so that only one of the processes runs at a time.

The value contained by the key-holding table is treated as a HOLD=UP
type of lock — no rollback considerations apply, and the lock is not

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 171

discarded if the process receives PIB-HELD status on some other FCS-
HOLD call.

The value placed in the key-holding table is the combination of the user-
defined value, and a pointer to the actual physical LFD name of the
associated file.

Syntax:

CALL „TIPFCS‟ USING FCS-HOLD

 file-pkt

 [hold-value]

Where:

FCS-HOLD
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

 This packet must contain the LFN of a file that the program
has accessed

hold-value
A field containing the character string entered in the key-
holding table. Exactly 4 bytes of data are entered in the
table. If this parameter is omitted, a fullword containing 1 is
used.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION
The logical file name is not assigned to the
program.

PIB-HELD
Some other process currently holds the specified
value for the same physical file (LFD).

PIB-FULL

The system is unable to establish the record lock
because the system resources required are not
available. You may want to increase your global
system shared memory (with tipinstall -M).

FCS-JOURNAL - Write User Journal Record

Transactions may use the FCS-JOURNAL function to write a user-defined
record to the TIP Journal. These ‗user‘ journal records are often used for
accounting or audit purposes.

The format of a user record in the journal file is entirely at the discretion of
the program writing the record. The only restriction is that the record must
contain a proper record prefix (described in Accessing TIP Journal Files).

TIP Programming Reference

172 Proprietary IP-622

Syntax:

CALL "TIPFCS" USING FCS-JOURNAL

 dummy-file-pkt

 jrn-record

Where:

FCS-JOURNAL
Function code from the TC-FCS copybook.

dummy-file-pkt
This is a dummy parameter required to maintain symmetry
with other file system calls. FCS ignores the contents of
this parameter.

jrn-record
The record to be written to the journal file.

 This group item must be halfword aligned and must contain
a proper journal record prefix including the total length of
the prefix and user data.

Error Conditions:

PIB-STATUS Meaning

PIB-IO-ERROR

An I/O error occurred while accessing the file.
One cause for this error may be that the
record length exceeds the system maximum
record size as specified at install time.

Additional considerations:

 The copybook TC-JRN (see the section of this manual entitled "TIP
Journal File") is provided as a layout of the journal record. Before
issuing a call to FCS-JOURNAL, the user program must move an
appropriate value to the length field (in the copybook it is named JRN-
REC-LEN).

 The value placed in JRN-REC-LEN is the length of the journal record
prefix plus the number of bytes of data that follows the prefix. If this
length is less than or equal to zero, a PIB-IO-ERROR is returned.

 The program need not supply any other information in the prefix area
since the TIP file system fills in the information before writing the
USER record to the journal file.

 The copybook TC-JRNC is provided to supply key constant values for
the journal record layout. These values are: the journal record prefix
length, the maximum journal record data length, and the maximum
journal record length.

FCS-RELEASE - Release Resource

Release an entry in the TIP key-holding table that was entered by a prior
call to TIPFCS with the FCS-HOLD function.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 173

Syntax:

CALL „TIPFCS‟ USING FCS-RELEASE

 file-pkt

 [hold-value]

Where:

FCS-RELEASE
Function code from the TC-FCS copybook.

file-pkt
Logical filename packet.

 This packet must contain the LFN of the file that was
specified when the corresponding FCS-HOLD operation
was issued.

hold-value
A field containing the character string in the key-holding
table that is to be released. Exactly 4 bytes of data are
required.

 If this parameter is omitted, a fullword containing 1 is used.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION
The logical file name is not assigned to the
program.

PIB-NOT-HELD
The specified key value was not found in the
key-holding table.

FCS-TREN - Mark Transaction End

If a file is defined in the TIP definition parameters with HOLD=TR ("hold
for transaction"), TIP automatically rolls back any updates, additions or
deletions if a program aborts while updating, adding, or deleting records
in that file. Records being deleted are restored and file additions are
removed.

The FCS-TREN function may be used explicitly (for example) if a program
updates batches of records and wishes to establish a new "roll back"
point after each "batch" to limit how far automatic roll back will occur if a
subsequent abort occurs.

Syntax:

CALL "TIPFCS" USING FCS-TREN

Where:

FCS-TREN
Function code from the TC-FCS copybook.

TIP Programming Reference

174 Proprietary IP-622

 Only one parameter is required; any other parameters are
ignored.

Use of FCS-TREN signals transaction end to TIP. Another use of this
function is to cause TIP to examine a value that the program has placed
in the field PIB-LOCK-INDICATOR. For example, a program set the "PIB-
ROLLBACK" value in that field, and then called FCS-TREN to force a
transaction roll back.

Example 1; Roll back updates done so far:

SET PIB-ROLLBACK TO TRUE

CALL "TIPFCS" USING FCS-TREN

Example 2; Mark new roll back point:

MOVE SPACE TO PIB-LOCK-INDICATOR

CALL "TIPFCS" USING FCS-TREN

CALL TIPFCER - Interpret FCS Error

A special purpose subroutine is provided to enable application programs
to interpret error codes that are returned by the TIP File Control System
(FCS). When a program issues a call to TIPFCS, error status is returned
in two places:

 The PIB (PIB-STATUS)

 The ninth byte of the file name packet (the byte after the Logical File
Name).

Programs are generally coded to anticipate a subset of the possible error
conditions that might occur and take the appropriate action depending on
the circumstances. For example, a "not found" error might be quite
reasonable for certain read operations (example: customer not on file).

If the program needs to generate a "generic" error message for rare or
unexpected error conditions, the TIPFCER subroutine may be used. This
subroutine returns a standard-format error message text that describes
the error condition that is passed as a parameter. This standard error text
can then be used to form an informational message for the terminal
operator.

Syntax:

CALL "TIPFCER" USING file-pkt

 msg-area

Where:

file-pkt
The logical file name packet (9 bytes, consisting of an 8-
byte LFN and one byte status field) that was in use at the
time an error was detected.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 175

msg-area
An 80-byte work field that is to receive the standard error
message text for the error status that is found in the FILE-
PKT.

Example of result text:

FCS Error=?, File=????????, Meaning=".............."

Example of Using TIPFCER:

05 PAYMAST-LFN PICTURE X(9).

05 FCS-ERROR-TEXT PICTURE X(80).

 (...)

CALL "TIPFCS" USING FCS-GET

 PAYMAST-LFN

 {...}

 IF NOT PIB-GOOD

 CALL "TIPFCER" USING PAYMAST-LFN

 FCS-ERROR-TEXT

 CALL "ROLL" USING FCS-ERROR-TEXT

 {...}

This example illustrates using the result from the call to TIPFCER to
output a single line on the terminal. Of course, the message text can be
used in whatever fashion the program considers appropriate.

Techniques for Deleting Records

Techniques for Deleting Records

TIP supports two types of record deletion schemes:

 Physical record deletion.

 Logical record deletion (often called delete flag)

You use the smfile utility to specify how to delete records in a file. If you
don‘t specify logical deletion, physical deletion is assumed. Your choice is
saved in the TIP file definition for that file.

Online programs may call the TIP File Control System (TIPFCS) to delete
a record. TIPFCS performs the appropriate type of delete operation for
the file.

Physical Record Deletion

The file system provides a standard physical delete mechanism for files:

This form of record deletion is not a convention it is a real and
effectively permanent delete.

Logical Record Delete

Logical record deletion is a convention established when a file is defined
to TIP. A specific byte in the record is identified as the "delete flag". A

TIP Programming Reference

176 Proprietary IP-622

specific value is designated as the "flag value". The convention that TIP
follows is:

When TIP reads a record from the file that contains the specified flag
value in the specified location, TIP pretends that the record does not
exist.

The crucial point of the convention is contained in the word pretends.
The record physically exists, but is flagged with a specific flag value to
make it "appear to TIP" as if it was deleted. The location that is normally
chosen for the delete flag is the first byte of the record that is not part of a
key field; in fact, many records contain some sort of status field that may
be used for this purpose.

The designated value can be any value; X'FF' is often used although
displayable graphics characters are easier to recognize.

Programmers must realize that this scheme is merely a convention that

TIP follows the records appear perfectly normal to other programs in
the system!. In particular, batch programs must be prepared to recognize
such "deleted" records and take appropriate action (such as ignoring
them!)

The way you specify the location and value of the delete flag has
changed as of TIP 2.1. You now enter the delete flag location as a 0-
relative value. You don’t have to change the existing file definitions
because the internal representation has not changed.

The value of the delete flag can be specified:

 As a single displayable character

 As 2 hex digits. The default flag value is ―FF‖.

TIPFCS for Indexed Files

This section describes TIP file control system operations you may specify
for indexed files.

User programs may access indexed files via any of the indices defined for
the file. When a multi-indexed file is defined in TIP the length, location,
and the attributes of each of the keys must be stated and one of the keys
must be designated as the primary key (KEY1 is the default primary key).
This information is provided when the file is defined to TIP using the
smfile utility program.

Multi-indexed files used by TIP must have the primary key defined as

(NDUP, NCHG) no duplicate key values and no changes allowed to this
key.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 177

FCS-ADD - Indexed: Add Record

The FCS-ADD function code adds a new record to a file. The data
supplied in the record area must contain the proper key information in the
appropriate location(s).

If an FCS-ADD function is issued for a record that is currently marked
"logically deleted", the TIP File System allows the "add" operation by
overwriting the previously logically deleted record with the new record
data.

Syntax:

CALL "TIPFCS" USING FCS-ADD

 file-pkt

 record

Where:

FCS-ADD
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area containing new record data.

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-KEY
A record with the same key already exists
(for an index that does not permit
duplicates).

PIB-FUNCTION The file is not assigned to the program.

PIB-FULL

The system is unable to establish the
record lock because the system
resources required are not available. You
may want to increase your global system
shared memory (with tipinstall -M).

PIB-IO-ERROR An I/O error occurred accessing the file.

PIB-WRONG-MODE
Write operations are not permitted for the
file.

Additional Considerations:

 The FCS-ADD function can be used while the file is in sequential
mode without affecting the current sequential position.

TIP Programming Reference

178 Proprietary IP-622

FCS-CLOSE - Indexed: Close File

The FCS-CLOSE function call indicates that a program is relinquishing
access to a file. The corresponding entry for the file is removed from the
Active File Table (AFT) of the issuing process. If there are no other online
users of the file TIPFCS physically CLOSEs the file by issuing a UNIX
kernel close request.

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION File is not assigned to the program

Additional Considerations:

 This function is intended for files that were opened by issuing an
explicit FCS-OPEN function (not for files implicitly accessed by the
program).

FCS-DELETE - Indexed: Delete Record

The FCS-DELETE function call deletes a record from the file. The TIP file
system uses the applicable delete scheme as specified in the TIP
definition for the file (see smfile in the TIP Utilities manual). See the
description of record delete schemes in Techniques for Deleting Records.

The program must acquire a record lock (by a call to FCS-GETUP) before
issuing this function call.

Syntax:

CALL "TIPFCS" USING FCS-DELETE

 file-pkt

 record

Where:

FCS-DELETE
Function code from the TC-FCS copybook.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 179

file-pkt
Logical file name packet.

record
Record area.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk

PIB-NOT-HELD
A prior FCS-GETUP for this record was not
successful or the record lock has been
released by TIP.

FCS-ESETL - Indexed: End Sequential Mode

Set a file to random processing mode (terminate sequential processing of
the file).

Syntax:

CALL "TIPFCS" USING FCS-ESETL

 file-pkt

Where:

FCS-ESETL
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

FCS-FLUSH - Indexed: Flush File

The FCS-FLUSH function is provided for compatibility with TIP/30
programs from the Unisys System/80 environment. FCS-FLUSH is
considered a no-op in the TIP environment.

Syntax:

CALL "TIPFCS" USING FCS-FLUSH

 file-pkt

TIP Programming Reference

180 Proprietary IP-622

Where:

FCS-FLUSH
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

FCS-GET - Indexed: Read by Key

Read a record with a specific key from a file. FCS-GET does not lock the
record for update.

This section discusses the behavior of FCS-GET assuming that the file is
not already set in sequential mode; see the following section for
information about sequential mode gets.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

 [key]

 [index-num]

 [dup-count]

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

key
Record key. If this parameter is omitted, the key is taken
from the record area.

index-num
Binary halfword holding the intended index number (PIC
9(3) BINARY.) If the index-num field is omitted, the default
index number for the file is used.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 181

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk

PIB-NOT-FOUND

The record does not exist or is flagged as
deleted using a logical delete flag. If the
record was logically deleted, the record is
returned in the specified record area.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

FCS-GET - Indexed: Read Sequential Key

Read the next record from a file that has already been set in sequential
mode (by a prior call to one of the various FCS-SETL-xx functions.) Using
FCS-GET implies that the record is not locked for update.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

182 Proprietary IP-622

record
Area where record data is placed.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk

PIB-EOF End of file is reached

PIB-NOT-FOUND

End of file is reached. This status may be
returned if the file was placed in
sequential mode by issuing a call to
TIPFCS with the function FCS-SETL-GT.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

Logically deleted records are skipped by the file system when reading in
sequential mode.

FCS-GET-INDEX - Indexed: Read for Key

This function does not return a record but sets the PIB-STATUS. It is
intended to be used to determine if the record key exists.

Syntax:

CALL "TIPFCS" USING FCS-GET-INDEX

 file-pkt

 key

 [index-num]

 [dup-count]

Where:

FCS-GET-INDEX
Function code from the TC-FCS copybook

file-pkt
Logical file name packet

key
Record key.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 183

index-num
Binary halfword holding the intended index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-SECTION Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND The key does not exist.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

Example:

MOVE MCS-KEY TO KEY-FIELD

CALL "TIPFCS" USING FCS-GET-INDEX

 FILE-PKT KEY-FIELD

IF PIB-GOOD

 PERFORM GETUP

 { }

 PERFORM PUT

ELSE

 PERFORM ADD

END-IF

TIP Programming Reference

184 Proprietary IP-622

FCS-GET-KEYED - Indexed: Read by Key

Read a record with a specific key from a file even if the file is in sequential
mode. FCS-GET-KEYED does not lock the record for update.

This section discusses the behavior of FCS-GET-KEYED assuming that
the file may be set in sequential mode.

This function is intended for situations where the file is in sequential mode
and a random read is desired. Issuing an FCS-GET retrieves the next
sequential record; this call ensures that a random read is issued.

Syntax:

CALL "TIPFCS" USING FCS-GET-KEYED

 file-pkt

 key

 record

 [index-num]

 [dup-count]

Where:

FCS-GET-KEYED
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

key
Record key. If this parameter is omitted, the key is taken
from the record area.

index-num
Binary halfword holding the intended index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 185

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

The record does not exist or is flagged as
deleted using a logical delete flag. If the
record was logically deleted, the record is
returned in the specified record area.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

FCS-GET-SEQ-LOCK - Indexed: WORKAROUND

This call is not implemented in TIP.

TIP/ 30
In TIP/30 FCS-GET-SEQ-LOCK performs the following:
Read a record with a specific key from a file that should
already be in sequential mode. Use FCS-GET-SEQ-
LOCKED to lock only one record key. If you issue this call,
and then repeat it, the first lock is released.

 The FCS-GET-SEQ-LOCKED function was added to
TIP/30 because a GETUP was not allowed while reading a
file in sequential mode.

TIP However, TIP allows FCS-GETUP while reading a file in
sequential mode.

FCS-GETUP always reads the record with the specified key even
if the file is in sequential mode, and has no effect on the
sequential position in the file. Thus, the FCS-GET-SEQ-
LOCKED function has not been implemented.

This function allowed an application to read a file sequentially, locking
each record as it was read, and unlocking it when the next record was
read. So that if the application found the record it wanted to modify it
could issue an FCS-PUT without losing the sequential file position.

TIP Programming Reference

186 Proprietary IP-622

When porting TIP/30 applications that use this call to TIP, change FCS-
GET-SEQ-LOCK to FCS-GET and add FCS-GETUP requests as required
by the application. You may have to add FCS-NOUP calls if your
application needs to call FCS-GETUP for records that it does not update.

Although there is an additional FCS function call to lock the record, this
technique may improve performance because there is no locking and
unlocking of records the application is not interested in.

FCS-GET-SEQ-NEXT - Indexed: Read Next Record

Read the next record from a file that has already been set in sequential
mode (by a prior CALL to one of the various FCS-SETL-xx functions.)
This call is the same as issuing FCS-GET for a file already in sequential
mode. The function name of this call is perhaps more clear to the
programmer reading the code.

Syntax:

CALL "TIPFCS" USING FCS-GET-SEQ-NEXT

 file-pkt

 record

Where:

FCS-GET-SEQ-NEXT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF End of file is reached.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

End of file is reached. This status may be
returned if the file was placed in
sequential mode by issuing a call to
TIPFCS with the function FCS-SETL-GT.
If the record was logically deleted, the
record is returned in the specified record
area.

PIB-DUPS-AHEAD Is set in the field PIB-DETAIL-STATUS if

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 187

PIB-STATUS Meaning

there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

FCS-GET-SEQ-PREV - Indexed: Read Previous Record

Read the previous record from a file that has already been set in
sequential mode (by a prior CALL to one of the various FCS-SETL-xx
functions.)

Syntax:

CALL "TIPFCS" USING FCS-GET-SEQ-PREV

 file-pkt

 record

Where:

FCS-GET-SEQ-PREV
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF End of file is reached

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-
FOUND

End of file is reached. This status may be
returned if the file was placed in sequential
mode by issuing a call to TIPFCS with the
function FCS-SETL-GT. If the record was
logically deleted, the record is returned in the
specified record area.

TIP Programming Reference

188 Proprietary IP-622

FCS-GETRN - Indexed: Read by Record Number

Read a record from an indexed file via a record number.

Whenever a record is read from an indexed file, the file system places a
unique "record number" in the field PIB-MIRAM-REL-REC-NUM.
Interested programs can save this value and use it at some later time to
directly retrieve the same record.

FCS-GETRN does not lock the record for update.

Syntax:

CALL "TIPFCS" USING FCS-GETRN

 file-pkt

 record

 rel-rec-num

Where:

FCS-GETRN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

rel-rec-num
A binary fullword containing the record number of the
record to read.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF

The requested record is beyond the last
record in the file. The field PIB-MIRAM-REL-
REC-NUM is set to the highest valid record
number in the file.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

The record does not exist or has been
deleted. If the record is logically deleted, the
record data is returned in the specified
record area.

Additional Considerations:

 FCS-GETRN may be used while the file is in sequential mode without
affecting the current sequential position.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 189

FCS-GETUP - Indexed: Read With Lock

Read the record with the specified key with intent to update. The
PRIMARY key of the record is placed in the TIP internal key holding table.
The record is LOCKED - other processes receive an error status if an
attempt is made to FCS-GETUP, FCS-LOCK or FCS-ADD the same
record.

Syntax:

CALL "TIPFCS" USING FCS-GETUP

 file-pkt

 record

 [key]

 [index-num]

 [dup-count]

Where:

FCS-GETUP
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

key
Record key. If omitted, the key is taken from the record
area.

index-num
Binary halfword holding the desired index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

TIP Programming Reference

190 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-FULL

The system is unable to establish the
record lock because the system resources
required are not available. You may want
to increase your global system shared
memory (with tipinstall -M).

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

The record does not exist or is flagged as
deleted using a logical delete flag. If the
record was logically deleted, the record is
returned in the specified record area.

PIB-HELD

The record is currently locked by some
other process in the TIP system. Normally,
programs that receive PIB-HELD retry the
GETUP request.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

PIB-DEADLOCK-
DETECTED

The I/O system has detected an
application logic deadlock condition. At
this point the transaction is rolled back
and the application program may take
whatever corrective action is desired. The
application could report an error to the end
user or restart the transaction over again.

Additional Considerations:

 If a user program receives a function status of PIB-HELD in response
to a FCS-GETUP (meaning the record is locked by some other
process) then FCS automatically pauses the caller for a small amount
of time. The program may try the GETUP again or CALL TIPTIMER to
wait a little longer.

 The number of times the retry is attempted is dependent on the
expected length of time the "other process" may lock the record and
the probability of such conflicting attempts to update the same record.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 191

After some reasonable number of retries, the program must consider
some alternate action such as informing the terminal operator about
the situation and asking whether or not the program should continue
to retry.

 FCS-GETUP may be used while the file is in sequential mode without
affecting the current sequential position.

 NOTE: There is an inherent limit to the number of record locks that can be
maintained for files that have the following characteristics:

 HOLD for Transaction is specified,

 The file is defined to use the "tipfcs" (D-ISAM) file server, and

 The file is specified as access "shared".

TIP can maintain only 200 record locks for the file in this situation.

This limitation can be worked around by declaring the file as "exclusive"
access or by ensuring that less than 200 locks are requested for the file.

FCS-LOCK - Indexed: Lock Record

Read the record with the specified key but do not return the record. The
PRIMARY key of the record is placed in the TIP internal key holding table
(see separate discussion of this topic). The record is LOCKED - other
processes receive an error status if an attempt is made to FCS-LOCK,
FCS-GETUP or FCS-ADD the same record.

Syntax:

CALL "TIPFCS" USING FCS-LOCK

 file-pkt

 key

 [index-num]

 [dup-count]

Where:

FCS-LOCK
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

key
Record key.

index-num
Binary halfword holding the desired index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

TIP Programming Reference

192 Proprietary IP-622

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-FULL

The system is unable to establish the
record lock because the system resources
required are not available. You may want
to increase your global system shared
memory (with tipinstall -M).

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

The record does not exist or is flagged as
deleted using a logical delete flag. If the
record was logically deleted, the record is
returned in the specified record area.

PIB-HELD

The record is currently locked by some
other process in the TIP system. Normally,
programs that receive PIB-HELD will retry
the LOCK request.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

PIB-DEADLOCK-
DETECTED

The I/O system has detected an
application logic deadlock condition. At
this point the transaction is rolled back
and the application program may take
whatever corrective action is desired. The
application could report an error to the end
user or restart the transaction over again.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 193

Additional Considerations:

 If a user program receives a function status of PIB-HELD in response
to a FCS-LOCK (meaning the record is locked by some other
process) then FCS automatically pauses the caller for a small amount
of time. The program may try the FCS-LOCK again or CALL
TIPTIMER to wait a little longer.

 The number of times the retry is attempted is dependent on the
expected length of time the "other process" may lock the record and
the probability of such conflicting attempts to update the same record.
After some reasonable number of retries, the program must consider
some alternate action such as informing the terminal operator about
the situation and asking whether or not the program should continue
to retry.

 FCS-LOCK may be used while the file is in sequential mode without
affecting the current sequential position.

FCS-NEXT - Indexed: Get Next Record

The FCS-NEXT function retrieves the next record (sequentially) from an
indexed file.

Use FCS-NEXT only when one record is required at a time. If a number of
records are to be read, it is more efficient to place the file in sequential
mode (using a function of FCS-SETL-xx) and issuing the required number
of FCS-GET functions to read the file sequentially.

Use of this call does not affect the current sequential position (if the file
happens to be in sequential mode).

Syntax:

CALL "TIPFCS" USING FCS-NEXT

 file-pkt

 record

 [key]

 [index-num]

 [dup-count]

Where:

FCS-NEXT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area where the data is placed.

key
Record key. If this parameter is omitted, the key is taken

TIP Programming Reference

194 Proprietary IP-622

from the record area. If this parameter is supplied, the
actual key of the record returned is placed in this field by
TIPFCS - this facilitates a subsequent call to FCS-NEXT.
This action, however, alters the field and means that the
field must be located in the program's LINKAGE SECTION
to permit the program to run as a reentrant process.

index-num
Binary halfword holding the desired index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND The next record does not exist.

PIB-DUPS-AHEAD

Is set in the field PIB-DETAIL-STATUS if
there is another record following the
retrieved record with a duplicate key. This
setting can alert the program there are
further records in a set of duplicates.

MBP ISAM does not provide this status
information, so it cannot be passed to the
application.

FCS-NOUP - Indexed: Cancel Update

The FCS-NOUP function call is used to "unlock" a record that has been
locked via a prior call to FCS-GETUP or FCS-LOCK provided the record
has not been updated! For example, in certain situations, a program may
issue FCS-GETUP and lock a record only to later determine that an
update is not desired for some reason.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 195

Syntax:

CALL "TIPFCS" USING FCS-NOUP

 file-pkt

 [key]

Where:

FCS-NOUP
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

key
Specific primary key value that is to be released. If omitted,
all key values currently held by this process for the
specified file are released.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-NOT-HELD The record was not held.

Additional Considerations:

 The FCS-NOUP function may be issued while the file is in sequential
mode without affecting the current sequential position.

FCS-OPEN - Indexed: Open File

Make the specified file available for processing by programs at the calling
terminal. An entry in the Active File Table (AFT) is created for the process
issuing this call.

Files are normally automatically made available to the program by an
implicit request for file names as defined in the program's TIP definition
entry (smprog). If a program needs to access more files, the files may be
opened by issuing explicit calls to TIPFCS with the FCS-OPEN function.
Alternatively, the program may simply issue calls to access the files. (The
choice is largely a matter of whether or not you prefer to get an error on
the OPEN or the first use of the file).

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 [file-desc]

TIP Programming Reference

196 Proprietary IP-622

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet - see separate description of the
copybook "TC-FDES". If omitted, the name in the FILE-
PKT is used to build a file descriptor.

Error Conditions:

PIB-STATUS Meaning

PIB-IO-ERROR
An I/O error occurred while opening the
file.

PIB-DUP-AFT-
NAME

An entry already exists in the Active File
Table (for the issuing process) that
matches the logical file name used in the
FILE-PKT field.

PIB-LOCKED The file is closed.

PIB-NOT-FOUND
The logical file name is not defined in the
active groups for this TIP session.

PIB-FUNCTION
The open function could not be performed.
Check Unix permissions.

FCS-PREV - Indexed: Get Previous Record

The FCS-PREV function retrieves the previous record (sequentially) from
an indexed file. Using this call does not affect current sequential position
(if the file happens to be in sequential mode).

Syntax:

CALL "TIPFCS" USING FCS-PREV

 file-pkt

 record

 [key]

 [index-num]

 [dup-count]

Where:

FCS-PREV
Function code from the TC-FCS copybook.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 197

file-pkt
Logical file name packet.

record
Record area where the data is placed.

key
Record key. If this parameter is omitted, the key is taken
from the record area. It does not matter if the key specified
does not exist in the file, as long as a lesser key exists in
the file.

Warning:
If this parameter is supplied, the actual key of the
record returned is placed in this field by TIPFCS
this facilitates a subsequent call to FCS-PREV.
This action, however, alters the field and means
that the field must be located in the program's
LINKAGE SECTION to permit the program to run
as a reentrant process.

index-num
Binary halfword holding the desired index number. If the
index-num field is omitted, the default index number for the
file is used. The default index is not necessarily the index
for the primary key.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk

PIB-NOT-FOUND
The previous record does not exist. This
occurs if the key specified is the first key
or if it precedes all existing keys.

TIP Programming Reference

198 Proprietary IP-622

FCS-PUT - Indexed: Rewrite Record

Rewrite (update) a record that was read and "locked for update" by a prior
call to TIPFCS with the FCS-GETUP function.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area containing the record contents.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-HELD

The primary key for the record is not
currently in the TIP key holding table.
This may be a result of not issuing a prior
FCS-GETUP to lock the record for
update or the previously acquired record
lock was discarded by TIP (see
discussion of record locking techniques).

PIB-WRONG-MODE
Write operations are not permitted for the
file.

Additional Considerations:

 The FCS-PUT function may be issued while the file is in sequential
mode without affecting the current sequential position.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 199

FCS-SETL - Indexed: Set Sequential Mode

The FCS-SETL function sets a file in sequential processing mode
beginning with the first record with a key greater than or equal to the key
supplied.

This function does not return a record - it simply establishes a starting
point for later sequential reading. Subsequent calls with a FCS-GET-
SEQ-NEXT or FCS-GET-SEQ-PREV function retrieve records in
sequence in the appropriate direction.

Syntax:

CALL "TIPFCS" USING FCS-SETL

 file-pkt

 [key]

 [index-num]

 [key-len]

 [dup-count]

Where:

FCS-SETL
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

key
The value of the key that is to be used to set the sequential
position. If this parameter is omitted, a default key of all low
values (binary zero) is used. If your intention is to start at
the beginning of the file use FCS-SETL-BOF; or use FCS-
SETL-EOF for the end of the file.

index-num
Binary halfword holding the index number. If the index-num
field is omitted, the default index number for the file is
used. The default index is not necessarily the index for the
primary key.

key-len
Binary fullword holding the length (in bytes) of a partial key
value that is supplied in the key field. Use of this parameter
implies that the key value provided is a prefix of the key
desired. If this parameter is omitted, TIPFCS assumes that
the value supplied as the key is a complete key.

dup-count
Binary fullword holding the ordinal number of the desired
record of a duplicate set.

TIP Programming Reference

200 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND
There are no records with a key greater
than or equal to the specified key.

FCS-SETL-BOF - Indexed: Set Sequential Mode

The FCS-SETL-BOF function sets a file in sequential processing mode at
the beginning of the file according to a specified index; this eliminates the
need to perform an FCS-SETL-xx function with a dummy key consisting
of low-values.

This function does not return a record - it simply establishes a starting
point for sequential reading. Subsequent calls with a FCS-GET-SEQ-
NEXT function will retrieve records in sequence.

Syntax:

CALL "TIPFCS" USING FCS-SETL-BOF

 file-pkt

 [index-num]

Where:

FCS-SETL-BOF
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

index-num
Binary halfword holding the index number. If the index-num
field is omitted, the default index number for the file is
used. The default index is not necessarily the index for the
primary key.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 201

FCS-SETL-EOF - Indexed: Set Sequential Mode

The FCS-SETL-EOF function sets a file in sequential processing mode at
the end of the file according to a specified index. This facilitates
establishing a starting point for reading a file backwards.

This function does not return a record - it simply establishes an ending
point for sequential reading. Subsequent calls with a FCS-GET-SEQ-
PREV function will retrieve records in backward sequence.

Syntax:

CALL "TIPFCS" USING FCS-SETL-EOF

 file-pkt

 [index-num]

Where:

FCS-SETL-EOF
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

index-num
Binary halfword holding the index number. If the index-num
field is omitted, the default index number for the file is
used. The default index is not necessarily the index for the
primary key.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

FCS-SETL-EQ - Indexed: Set Sequential Mode

The FCS-SETL-EQ function sets a file in sequential processing mode
beginning with the first record with a key equal to the key supplied.

This function does not return a record - it simply establishes a starting
point for sequential reading. Subsequent calls with a FCS-GET-SEQ-
NEXT function retrieve records in sequence.

See also the description of the FCS-ESETL function.

TIP Programming Reference

202 Proprietary IP-622

Syntax:

CALL "TIPFCS" USING FCS-SETL-EQ

 file-pkt

 key

 [index-num]

 [key-len]

 [dup-count]

Where:

FCS-SETL-EQ
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

key
Record key. If omitted, processing begins with the first
record in the file.

index-num
Binary halfword holding the index number. If the index-num
field is omitted, the default index number for the file is
used. The default index is not necessarily the index for the
primary key.

key-len
Binary fullword holding the length (in bytes) of a partial key
value that is supplied in the key field. Use of this parameter
implies that the key value is a prefix of the key desired. If
this parameter is omitted, TIPFCS assumes that the key
value supplied is complete.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only
the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND The specific record does not exist.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 203

Additional Considerations:

 TIP will return PIB-NOT-FOUND if the record is deleted.

FCS-SETL-GT - Indexed: Set Sequential Mode

The FCS-SETL-GT function sets a file in sequential processing mode
beginning with the first record with a key greater than the key supplied.

This function does not return a record - it simply establishes a starting
point for sequential reading. Subsequent calls with a FCS-GET function
will retrieve records in sequence.

See also the description of the FCS-ESETL function.

Syntax:

CALL "TIPFCS" USING FCS-SETL-GT

 file-pkt

 [key]

 [index-num]

 [key-len]

 [dup-count]

Where:

FCS-SETL-GT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

key
Record key. If omitted, processing begins with the first
record in the file.

index-num
Binary halfword holding the index number. If the index-num
field is omitted, the default index number for the file is
used. The default index is not necessarily the index for the
primary key.

key-len
Binary fullword that holds the length (in bytes) of a partial
key value that is supplied in the key field. Use of this
parameter implies that the key value is a prefix of the key
desired. If this parameter is omitted, TIPFCS assumes that
the key value supplied is complete.

dup-count
Binary fullword holding the ordinal number of the desired
record in a set of duplicate records. For example: 100
means "return the 100th record". If this field is omitted, only

TIP Programming Reference

204 Proprietary IP-622

the first record (of a set of duplicates) is accessed.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND
There are no records with a key greater
than the specified key.

FCS-SKIP - Indexed: Skip Sequentially

The FCS-SKIP function is appropriate only for an indexed file set in
sequential mode. A specified number of records are skipped. Subsequent
calls with a FCS-GET_SEQ-NEXT function continue at the point where
the FCS-SKIP ended.

This function does not return a record - it simply establishes a starting
point for subsequent sequential reading.

In any case, deleted records are not included in the number of records
skipped - FCS-SKIP skips the specified number of non-deleted records.

Syntax:

CALL "TIPFCS" USING FCS-SKIP

 file-pkt

 skip-count

Where:

FCS-SKIP
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

skip-count
Binary fullword holding the number of records to skip.
Logically deleted records are not counted when FCS
searches for the Nth duplicate record via the dup-count
supplied.

Error Conditions:

PIB-STATUS Meaning

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 205

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-WRONG-MODE
The file is not indexed, or is not already
in sequential mode.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-EOF End of file reached.

TIPFCS for Direct Files

This section describes TIP file control system operations you may specify
for direct access files. Records are referenced by a record number
relative to 1. For DAM, the relative record number is also known as the
"block number".

Key Passed to TIPFCS

In all cases the key passed to TIPFCS is a binary fullword (PIC 9(9)
BINARY) that holds the relative record number of the record to be
processed.

FCS-ADD - Direct: Add Record

The FCS-ADD function adds a new record to a non-indexed file or
rewrites an existing record.

Syntax:

CALL "TIPFCS" USING FCS-ADD

 file-pkt

 record

 [rel-rec-num]

Where:

FCS-ADD
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area containing new record data.

rel-rec-num
Binary fullword containing the relative record number of the
record that will be added to the file. If this relative record

TIP Programming Reference

206 Proprietary IP-622

number is beyond the current end-of-data (EOD) pointer,
TIPFCS writes the record using relative record number
EOD+1.

 Note: TIPFCS always updates this field to reflect the actual relative record
number that was written. For this reason, this field must appear in the
program's LINKAGE SECTION to permit re-entrant execution.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-HELD
Some other process has the specified
record locked.

Additional Considerations:

 The FCS-ADD function rewrites the record if the specified record
number already exists in the file. The record is rewritten and is
journalized (if required) as a new record.

 Using FCS-ADD to rewrite records is in direct conflict with standard
record locking facilities - some race conditions may occur if this
technique is employed. The user program must ensure that the race
conditions are not a problem. A popular technique is to perform a
conventional FCS-GETUP on a control record before issuing such
FCS-ADD operations. In this way programs essentially use the FCS-
GETUP on the control record as a queuing mechanism.

FCS-CLOSE - Direct: Close File

The FCS-CLOSE function call indicates that a program is relinquishing
access to a file. TIP removes the corresponding entry for the file from the
Active File Table (AFT) of the issuing process.

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 207

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION File is not assigned to the program.

Additional Considerations:

 This function is used for files that were accessed by issuing an explicit
FCS-OPEN function.

FCS-DELETE - Direct: Delete Record

The FCS-DELETE function call deletes a record from the file. FCS uses
the applicable delete scheme as specified in the TIP definition for the file.

A separate section of this chapter provides details about the two delete
schemes (see references to "DELETE").

Before issuing this function call the program must first acquire the record
with an update lock by issuing a prior call with the FCS-GETUP function.

Syntax:

CALL "TIPFCS" USING FCS-DELETE

 file-pkt

 record

 [rel-rec-num]

Where:

FCS-DELETE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area.

rel-rec-num
Binary fullword that contains the relative record number of
the record that is to be deleted. If you omit this parameter,
the default is the last record number successfully
referenced by the process.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

TIP Programming Reference

208 Proprietary IP-622

PIB-STATUS Meaning

PIB-NOT-HELD
A prior FCS-GETUP was not successfully
done for this record or the record lock was
released.

FCS-FLUSH - Direct: Flush File

The FCS-FLUSH is not used by TIP and is provided for compatibility with
the System/80 TIP/30 product.

Syntax:

CALL "TIPFCS" USING FCS-FLUSH

 file-pkt

Where:

FCS-FLUSH
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

FCS-GET - Direct: Read Record

Read a specific record from a direct file. The record is not locked for
update.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

 rel-rec-num

Where:

FCS-GET
Function code from the TC-FCS copybook

file-pkt
Logical file name packet.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 209

record
Area where record data is to be placed.

rel-rec-num
Binary fullword containing the relative record number of the
record to read.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF
The requested record is beyond the last
record in the file.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND

The record does not exist or it is flagged
deleted using a logical delete flag. In the
latter case, the record data is returned to
the program even though PIB-NOT-
FOUND is set.

FCS-GETUP - Direct: Read With Lock

Read the record with the specified relative record number with intent to
update. The relative record number (and the filename information) is
placed in the TIP internal key holding table. The record is LOCKED -
other processes receive an error status if they attempt to FCS-GETUP or
FCS-ADD a record for this file with the same relative record number.

Syntax:

CALL "TIPFCS" USING FCS-GETUP

 file-pkt

 record

 rel-rec-num

Where:

FCS-GETUP
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where the record data is placed.

rel-rec-num
Binary fullword that contains the relative record number of
the record to be read.

TIP Programming Reference

210 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-FOUND
The record does not exist or is flagged as
logically deleted.

PIB-HELD
The record is currently locked by some
other process in the TIP system.

Additional Considerations:

 If the program receives the error status "PIB-HELD", the program
probably should retry the FCS-GETUP function (possibly after a brief
delay via TIPTIMER). The number of times the retry is attempted is
application-dependent, after some number of retries, consider some
alternate action.

FCS-NOUP - Direct: Cancel Update

You may use the FCS-NOUP function call to unlock a record that was
locked via a previous call to FCS-GETUP provided that the record has not
been updated.

In certain situations, a program may issue a FCS-GETUP and lock a
record only to later determine that an update is not appropriate.

Syntax:

CALL "TIPFCS" USING FCS-NOUP

 file-pkt

 [rel-rec-num]

Where:

FCS-NOUP
Function code from the TC-FCS copybook.

file-pkt
logical file name packet.

rel-rec-num
Binary fullword containing the relative record number of the
specific record to be released. If omitted, all records
currently held by this process for the specified file are
released.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 211

Error Conditions:

 PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-NOT-HELD The record was not held.

PIB-EOF The record number is not valid.

FCS-OPEN - Direct: Open File

Make the specified file available for processing by programs at the calling
terminal. TIP creates an entry in the Active File Table (AFT) for the
process issuing this call.

This function is needed only for files which are not implicitly opened as
result of the FILES= keyword in the program's TIP definition entry.

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 [file-desc]

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet - see separate description of the
copybook TC-FDES. If this parameter is omitted, TIP uses
the name in the FILE-PKT to build a file descriptor.

Error Conditions:

PIB-STATUS Meaning

PIB-IO-ERROR
An I/O error occurred while opening the
file.

PIB-DUP-AFT-
NAME

An entry already exists in the Active File
Table (for the issuing process) that
matches the logical file name used in the
FILE-PKT field.

PIB-LOCKED The file is closed.

PIB-NOT-FOUND The logical file name is not defined in the

TIP Programming Reference

212 Proprietary IP-622

PIB-STATUS Meaning

active groups for this TIP session.

PIB-FUNCTION
The open function could not be performed.
Check Unix permissions.

FCS-PUT - Direct: Update Record

Update (rewrite) a record obtained by a previous FCS-GETUP.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

 [rel-rec-num]

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area containing the new record contents.

rel-rec-num
Binary fullword that contains the relative record number of
the record TIPFCS is to update. If this parameter is
omitted, the default is the last record number referenced by
the process for this file.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-NOT-HELD

The relative record number is not currently in
the TIP key holding table. This may be a
result of not issuing a prior FCS-GETUP to
lock the record for update or TIP has
discarded the previously acquired record lock
(see discussion of record locking elsewhere
in this manual).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 213

TIPFCS for Sequential Files

TIPFCS for Sequential Files

This section describes TIP file control system operations for sequential
files. Sequential files include:

 Sequential

 PRINT

 TAPE.

A sequential file must be designated in the TIP file definition as either an
INPUT or OUTPUT file (INOUT is not available for sequential
processing).

Sequential files may not be assigned to a program by specifying the
filename in the program's TIP catalogue entry. Sequential files must be
explicitly opened and closed by the program by issuing FCS-OPEN and
FCS-CLOSE function CALLs to the TIP File Control System (TIPFCS).

The operating system's spooling facilities normally process printer files.
This spooling activity is transparent to FCS.

Print files use a standard variable length print line. The layout of the print
line is the same as the layout required by the TIP printing interface
"TIPPRINT". (See the TIPPRINT section of this document or the copy
book TC-PLINE).

FCS-CLOSE - Sequential: Close File

The FCS-CLOSE function indicates that a program is relinquishing
access to a file. TIP removes the corresponding entry for the file from the
Active File Table (AFT) of the issuing process.

If there are no other on-line users of the file and the file was generated
with OPEN=NO, TIPFCS will physically CLOSE the file by issuing a
"CLOSE".

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

214 Proprietary IP-622

Error Conditions:

 PIB-STATUS Meaning

PIB-FUNCTION File is not assigned to the program.

Additional Considerations:

 Issue this function only for files that were opened by issuing a FCS-
OPEN function (files explicitly accessed by the program).

FCS-GET - Sequential: Read Record

Read the next record from a sequential input file.

Attempts to have more than one program simultaneously read the same
input file can result in interleaved read operations (each program will
"miss" whatever records the other programs read).

Furthermore, there is no provision for specifying a particular starting
position - an FCS-GET issued for a sequential file obtains the next record
in the file - regardless of who read the last record.

For this reason, it is recommended that sequential input files be declared
as OPEN=NO in the TIP definition for the file and steps be taken to
ensure that only one program reads the file at a time.

One way to do this is to make use of the TIPFLAGS subroutine (see
documentation for the TIPFLAGS subroutine in the PCS section of this
manual) or by using the FCS-HOLD and FCS-RELEASE function CALLs
of TIPFCS.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Area where record data is to be placed

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 215

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The File is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-EOF End of file has been reached.

PIB-WRONG-MODE File is not defined as an input file.

PIB-NOT-FOUND

The record does not exist or is flagged
deleted using a logical delete flag. If the
record is logically deleted, the record data
is returned in the specified record area

FCS-OPEN - Sequential: Open File

Make the specified file available for processing by programs at the calling
terminal. TIP creates an entry in the Active File Table (AFT) for the
process issuing this call.

If there are no other users of the file and the file was specified in the TIP
definition as "OPEN=NO", TIPFCS will physically OPEN the file.

For the FCS-OPEN function to be successful, the file to be opened must
be:

 defined in the TIP Catalogue (this is where the connection is made
between a logical file name (LFN) and the physical file name (LFD)

 defined in the TIP FILE definition.

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 [file-desc]

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet - see separate description of the
copybook "TC-FDES".If omitted, the name in the FILE-PKT
parameter is used to build a file descriptor.

TIP Programming Reference

216 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-IO-ERROR
An I/O error occurred while opening the
file.

PIB-DUP-AFT-NAME

An entry already exists in the Active File
Table (for the issuing process) that
matches the logical file name used in
the FILE-PKT field.

FCS-PUT - Sequential: Write A Record

Write a record to a sequential output file.

FCS permits multiple concurrent writers for an output sequential file. Each
program appends a new record to the file - in other words, the write
operations might be interleaved.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area containing data for the record to be added.

Note: If the output file is a printer file (generation type "PRINT"),
the first 5 bytes of the record must be a properly
constructed header containing the length of the record
area and the printer spacing control code. See the
description of the structure of print line records in the
section describing TIPPRINT and the supplied copybook
TIP/TC-PLINE.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 217

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The File is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-EOF The file is full and cannot be extended.

PIB-WRONG-MODE

The file is not defined as on output file,
or for FCS-PUT to a printer file, the
printer spacing code (in the 5 byte
header) is not a valid spacing code.

TIPFCS for Dynamic Files

TIP supports a file organization known as a "dynamic file". Dynamic files
have the following characteristics:

 Dynamic files may be created and scratched on demand by TIP
programs.

 Record size is fixed at 512 bytes.

 Records are referenced by a relative record number (in a similar
manner as a direct access file).

 Dynamic File names consist of three sections (each name may be up

to eight characters long) an example is: EDP/BATCH/007 TIP edit
buffers are stored in the $TIPROOT directory under the directory
name "tipfiles/dynamic". The first two names of a dynamic file
represent further directory names under "tipfiles/dynamic". The final
(3rd) part of the dynamic file name are individual file names there
under. For example, a dynamic file named "EDP/TEST/PAY020"
appears in the Unix file:
$TIPROOT/tipfiles/dynamic/EDP/TEST/PAY020

Note: The dynamic file name is forced to all uppercase.

 Programs can dynamically create records in any sequence desired;
for example, if only 40 records exist at the moment and the program
specifies a read or a write of record 87, the file system will allocate
more blocks for the file and then access block (record) 87.

 To allow maximum flexibility, TIPFCS allows the program to read or
write multiple (sequential) records with a single operation. This, for
example, allows a program to simulate a record size of 1024 by
always writing two records at a time - blocks 1 and 2, then blocks 3
and 4, and so on.

 Dynamic files may be created as "permanent" or "temporary" files -
temporary files are automatically scratched when the program
terminates; programs must explicitly scratch permanent dynamic files.

TIP Programming Reference

218 Proprietary IP-622

Dynamic File Functions:

Dynamic files support the following functions (the function names refer to
function codes defined by the copy book TC-FCS).

Function Description

FCS-ACCESS Open an existing file.

FCS-ASSIGN Open file; create if necessary.

FCS-CLOSE Close a file.

FCS-CREATE Create a new file.

FCS-GET Read record(s) from the file.

FCS-OPEN
Open file (choice of ACCESS, ASSIGN
or CREATE).

FCS-PUT Write record(s) to the file.

FCS-SCRATCH Scratch a file.

FCS-ACCESS - Dynamic: Access File

Before an application program can perform I/O to an existing dynamic file,
the file must be assigned to the program. Use the function FCS-ACCESS
to open an existing dynamic file.

Syntax:

CALL "TIPFCS" USING FCS-ACCESS

 file-pkt

 file-desc

Where:

FCS-ACCESS
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet. See the description of the copybook
TC-FDES.

Example of Accessing an Existing Dynamic File:

To access an existing dynamic file named: EDP/TAX/TABLES (for read-
only operations):

02 TAXTABLE-LFN PICTURE X(9).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 219

02 TAXTABLE-FDES. COPY TC-FDES.

 ...

 MOVE "TAXTABLE" TO TAXTABLE-LFN

 MOVE "EDP" TO FDES-user id

 MOVE "TAX" TO FDES-CATALOG

 MOVE "TABLES" TO FDES-FILE-NAME

 MOVE SPACES TO FDES-PASSWORD

 MOVE FCS-CLASS-PERM TO FDES-FCS-CLASS

 MOVE SPACE TO FDES-FCS-TYPE

 MOVE FCS-PERM-READONLY

 TO FDES-FCS-PERM

 MOVE FCS-LOCK-NO TO FDES-FCS-LOCK

 CALL "TIPFCS" USING FCS-ACCESS

 TAXTABLE-LFN

 TAXTABLE-FDES

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-AFT-NAME

A file with the logical file name specified
in the FILE-PKT parameter is already
present in the active file table (AFT) for
the process.

PIB-NOT-FOUND The requested file does not exist.

FCS-ASSIGN - Dynamic: Assign File

This FCS function will assign an existing Dynamic file for use by the
calling program. If the file does not exist, TIPFCS will automatically create
a new file according to the specifications given in the FILE-DESCRIPTOR
packet.

Syntax:

CALL "TIPFCS" USING FCS-ASSIGN

 file-pkt

 file-desc

Where:

FCS-ASSIGN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

220 Proprietary IP-622

file-desc
File descriptor packet. See the description earlier of the
copybook TC-FDES.

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-AFT-NAME

A file with the logical file name specified
in the FILE-PKT parameter is already
present in the active file table (AFT) for
the process.

FCS-CLOSE - Dynamic: Close File

When an application program is finished with a dynamic file it should
remove the file from the Active File Table by issuing a FCS-CLOSE. If the
program created a dynamic file as a "temporary" file, this operation will
scratch the file. If the file was created as a permanent dynamic file, the
FCS-CLOSE operation only removes the file from the Active File Table.

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

FCS-CREATE - Dynamic Create File

This function creates new dynamic files, either temporary or permanent.
The application program must first fill in the fields of the FILE-
DESCRIPTOR with appropriate values.

If the field FDES-user id is spaces or low-values, TIPFCS will use the
user id from the PIB (PIB-UID).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 221

If the field FDES-CATALOG is SPACES or low-values, TIPFCS will
construct a unique name consisting of the terminal-id (PIB-TID) and
program execution stack level (PIB-LEVEL).

Set the field FDES-FCS-TYPE to the value FCS-TYPE-NEW.

Set FDES-FCS-CLASS to FCS-CLASS-PERM or FCS-CLASS-TEMP to
create a permanent or temporary file.

Set FDES-FCS-LOCK to FCS-LOCK-YES or FCS-LOCK-NO to indicate
whether the program desires exclusive use of this dynamic file.

Syntax:

CALL "TIPFCS" USING FCS-CREATE

 FILE-PKT

 file-desc

Where:

FCS-CREATE
Function code from the TC-FCS copybook.

FILE-PKT
Logical file name packet

file-desc
File descriptor packet. See the earlier description of the
copybook TC-FDES.

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-AFT-NAME
A file of the name given in the FILE-
PKT is already assigned to the process.

PIB-NOT-FOUND The requested file already exists.

FCS-GET - Dynamic: Read Record(s)

Records in FCS Dynamic files are referenced by relative (to 1) record
number. The program specifies a relative record number (as a fullword) to
read.

If the optional parameter REC-COUNT is specified, FCS reads that many
records (starting with the relative record indicated by REC-NUM) into the
record area.

If the optional parameter REC-COUNT is not specified, FCS reads a
single record into the record area specified.

TIP Programming Reference

222 Proprietary IP-622

You must fullword align the record area; it must also be large enough to
accommodate the number of records requested by REC-COUNT (that is,
REC-COUNT * 512 bytes).

If a requested record is beyond the current allocation of blocks, TIPFCS
will allocate more blocks to the file, up to the maximum allowable limit for
a dynamic file.

When TIPFCS returns blocks to the calling program, data in the blocks is
not initialized; the program must take responsibility for the contents of the
blocks.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

 rec-num

 [rec-count]

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area of (512 x REC-COUNT) bytes. This area must
be fullword aligned.

rec-num
Binary fullword that specifies the relative record number of
the first record to read.

rec-count
Optional fullword that specifies how many records to read.
Default is one record.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF
The requested record is beyond the last
record in the file.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

Example:

05 LFN-PKT PICTURE X(9).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 223

05 REL-REC-NUM PICTURE 9(8)

 COMP SYNC.

05 REC-COUNT PICTURE 9(8)

 COMP SYNC.

05 DYN-REC.

 10 FILLER PICTURE 9(8)

 COMP SYNC.

 10 FILLER PIC X(1020).

 MOVE 1 TO REL-REC-NUM

 MOVE 2 TO REC-COUNT

 CALL "TIPFCS" USING FCS-GET

 LFN-PKT

 DYN-REC

 REL-REC-NUM

 REC-COUNT

In the example above, the program must next increment the REL-REC-
NUM field by REC-COUNT to read the next set of records.

FCS-OPEN - Dynamic: Open File

Use the FCS-OPEN function to open any dynamic file. The file descriptor
supplied with the call and any existing TIP record information is used to
determine what type of file is to be opened:

To open an existing file set FDES-FCS-TYPE to FCS-TYPE-OLD. If the
FDES-FCS-TYPE is left as a space and the file exists, it is opened. If the
file does not exist, it is created.

To create a new file set FDES-FCS-TYPE to FCS-TYPE-NEW.

Thus, depending on the values set in the file descriptor, FCS-OPEN can
perform the same functions as FCS-ACCESS, FCS-ASSIGN and FCS-
CREATE.

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 file-desc

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

224 Proprietary IP-622

file-desc
File descriptor packet. See the earlier description of the
copybook TC-FDES.

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-AFT-NAME
A file of the name given in the FILE-PKT
is already assigned to the process.

PIB-NOT-FOUND The requested file does not exist.

FCS-PUT - Dynamic: Write Record(s)

Dynamic file records are a fixed size of 512 bytes. The FCS-PUT function
allows the program to write one or more records (in sequence) to a
dynamic file.

If a RECORD-NUMBER is specified that is beyond the current limit of the
file, FCS will expand the file to accept that record up to the maximum file
size allowed for a dynamic file.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

 rec-num

 [rec-count]

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area. The size of this area must be 512 bytes times
the value of REC-COUNT. This field must be fullword
aligned.

rec-num
Binary fullword that specifies the relative record number of
the first record to be written.

rec-count
Optional fullword that specifies the number of records to be
written. Default is one record.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 225

Error Conditions:

PIB-STATUS Meaning

PIB-EOF The requested records are invalid.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

FCS-SCRATCH - Dynamic: Scratch File

The FCS-SCRATCH function deletes either "temporary" or "permanent"
dynamic files from the FCS system.

A file must be assigned before it can be scratched. Temporary Dynamic
files are automatically scratched if TIP terminates abnormally or if the
transaction aborts.

Syntax:

CALL "TIPFCS" USING FCS-SCRATCH

 file-pkt

Where:

FCS-SCRATCH
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The file is not assigned to the program.

PIB-WRONG-MODE The file is not a dynamic file.

TIP Programming Reference

226 Proprietary IP-622

TIPFCS for Edit Buffers

TIPFCS for Edit Buffers

The text editors supplied with TIP do all editing in a special purpose file
called an "edit buffer". Edit buffers are named files containing lines of text.
Each line is referenced by relative line number, starting with 1.

If a record is deleted all following records move up (their line number
decreases by one). If a record is added all following records move down
(their line number increases by one).

TIP uses a two part name to name edit buffers. Each part of the name
may be from one to 8 characters. For example:

EDP/PAY020

The first part of the name is normally determined by the group
membership of the user who creates the edit buffer. This is the
assumption made by the TIP text editors; however, this is not a hard and
fast rule. TIP edit buffers are stored in the $TIPROOT directory under the
directory name "tipfiles/dynamic". Each user group represents a further
directory name under "tipfiles/dynamic" and buffers are individual file
names there under. For example, an edit buffer named "EDP/PAY020"
appears in the Unix file:
$TIPROOT/tipfiles/dynamic/EDP/PAY020

Notice that the group name (EDP) and the buffer name (PAY020) are
forced to all uppercase.

FCS-ADD - Edit: Add/Insert Line

The FCS-ADD function adds or inserts a new record to an edit buffer.

Syntax:

CALL "TIPFCS" USING FCS-ADD

 file-pkt

 record

 line-num

Where:

FCS-ADD
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 227

record
Record area.

line-num
Binary fullword holding the relative record number that is to
be added.

 The supplied record becomes the new contents of the
specified line number. All records that follow this line
number will have their record number increased by 1.

 If this field contains a value that is higher than the current
last line number, this record is added at the end of the edit
buffer and TIPFCS modifies the field to reflect the resulting
actual line number of the added record.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF The line number is invalid.

PIB-FUNCTION
The edit buffer is not assigned to the
process.

Additional Considerations:

 The record is written to the file at the specified position. TIP shifts any
records currently at that position or higher to the next higher position
by altering the index to reflect their new logical position in the file.

FCS-CLOSE - Edit: Close Buffer

The FCS-CLOSE function closes an edit buffer and removes the entry for
the edit buffer from the Active File Table (AFT) of the process.

Before issuing this call, the program must be certain to issue an FCS-
FLUSH function (see description of this function), otherwise some
changes to the edit buffer may not be written to the disk.

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

228 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The edit buffer is not assigned to the process.

FCS-DELETE - Edit: Delete Line

The FCS-DELETE function deletes a line from an edit buffer.

Syntax:

CALL "TIPFCS" USING FCS-DELETE

 file-pkt

 record

 line-num

Where:

FCS-DELETE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area.

 This parameter is a dummy parameter to maintain
symmetry with other calls to TIPFCS.

line-num
Binary fullword holding the relative line number to be
deleted.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The edit buffer is not assigned to the process.

PIB-EOF The line number is invalid.

Additional Considerations:

 TIP deletes the record at the specified position from the file. Any
records with a higher line number are shifted down one line number
by changing the index to reflect their new logical position in the file.

Note: The specification of a line number that is out of bounds (for
example, past end of file) will not result in an error status!

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 229

FCS-FLUSH - Edit: Flush Buffer

TIPFCS assumes responsibility for the maintenance of the index for an
edit buffer. Updated blocks are not written to disk unless TIPFCS
determines that they need to be written to make space in the I/O buffer
that is maintained in memory.

Edit buffers are implemented as Windows NT memory mapped files. The
operating system will page the file in and out of memory as required. The
FCS-FLUSH command is used by Windows NT to flush any updated
areas of the file to disk immediately. There is no need to issue a FCS-
FLUSH prior to issuing a CLOSE. The TIP Application Server will do this
automatically.

Syntax:

CALL "TIPFCS" USING FCS-FLUSH

 file-pkt

Where:

FCS-FLUSH
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The edit buffer is not assigned to the process.

FCS-GET - Edit: Read Line

The FCS-GET function reads a line from an edit buffer.

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

 line-num

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

TIP Programming Reference

230 Proprietary IP-622

record
Record area. This area must be large enough to hold a
record from the edit buffer.

line-num
Binary fullword holding the relative line number to read.

 This parameter is optional. If omitted, you will receive the
next line.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF The line number is invalid.

PIB-FUNCTION The edit buffer is not assigned to the process.

FCS-OPEN - Edit: Open Buffer

Edit buffers are "line-oriented" in the sense that they manipulate "lines" of
data. The most common implementation of edit buffers (used by TIP
editors) specifies a line length of 85 characters. TIP always references
the lines in an edit buffer by positive whole numbers that range from one
in increments of one.

TIP reserves bytes 82 through 85. Records in an edit buffer are accessed
by a line number relative to one.

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 file-desc

 [buffer]

 [num-buffers]

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet (see copybook TC-FDES). The
example that follows illustrates additional details.

buffer
A work area that TIPFCS may use as an I/O buffer for the
file. If this parameter is omitted, FCS attempts to allocate a

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 231

dynamic buffer (of 1536 bytes) from the TIP free memory
pool.

 Note: The second halfword of this buffer always contains a
binary number representing the number of lines currently in
the edit buffer. The user program must never modify the
contents of this buffer - only TIPFCS is intended to access
this buffer.

num-buffers
A halfword that indicates the number of 512 byte data
blocks that immediately follow the mandatory initial index
block in the "buffer" specified in the previous parameter.

 Minimum specified value is two (implying that "buffer" is
512 + (2*512) bytes

 Maximum specified value is 12 (implying that "buffer" is
512 + (12*512) bytes

 The larger the number of data blocks allocated in the
buffer, the more potential work can be accomplished in
memory (rather than performing disk I/O).

line-length
A halfword containing the desired line length for this edit
buffer.

 Range: 64 through 512 bytes inclusive.

 Default value (if parameter is omitted or is out of the
allowable range) is 81. The TIP editors default to creating
edit buffers that have a line length of 81 characters (80
bytes of user data plus 1 byte of control information).

Error Conditions:

PIB-STATUS Meaning

PIB-DUP-AFT-NAME
The logical file name is already in use by
the process.

PIB-NOT-FOUND
The edit buffer is not assigned to the
process.

PIB-IO-ERROR
 An I/O error occurred while opening the
file.

Example:

... in the program's WORKING-STORAGE ...

77 NUM-BUFFERS PICTURE 9(3)

 BINARY VALUE 3.

 ... in the program's work area ...

02 EDIT-BUF-DESC. COPY TC-FDES.

TIP Programming Reference

232 Proprietary IP-622

 05 EDIT-BUF-LFN PICTURE X(9).

 05 EDIT-WORKAREA.

 10 EDIT-BUFFER-WORD1 PICTURE 9(8)

 BINARY.

 10 EDIT-BUFFER-WORD1R REDEFINES

 EDIT-BUFFER-WORD1.

 15 FILLER PICTURE X(2).

 15 EDIT-LINES PICTURE 9(4)

 BINARY.

 10 FILLER PICTURE X(508).

 10 FILLER PICTURE X(512).

 10 FILLER PICTURE X(512).

 10 FILLER PICTURE X(512).

 ... in the PROCEDURE DIVISION ...

 MOVE "WORKFIL" TO EDIT-BUF-LFN

 MOVE "EDP" TO FDES-user id

 MOVE "SOMEDATA" TO FDES-FILE-NAME

 MOVE SPACES TO FDES-PASSWORD

 MOVE FCS-CLASS-QED TO FDES-FCS-CLASS

 MOVE SPACE TO FDES-FCS-TYPE

 FDES-FCS-PERM

 FDES-FCS-LOCK

 CALL "TIPFCS" USING FCS-OPEN

 EDIT-BUF-LFN

 EDIT-BUF-DESC

 EDIT-WORKAREA

 NUM-BUFFERS

This example opens an edit buffer named "EDP/SOMEDATA". Since
FDES-FCS-TYPE is space, it will either open an existing edit buffer or (if
necessary) create one by that name.

Note: In the definition of the edit work area the first word is defined as a
binary synchronized item to force proper alignment of the group item! The
second halfword is redefined to allow interrogation of the number of lines
in the edit buffer.

The stated number of buffers is three; therefore, three filler items that are
512 bytes each follow the first block of 512 bytes.

FCS-PUT - Edit: Replace Line

The FCS-PUT function replaces or rewrites an existing line in an edit
buffer.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

 line-num

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 233

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area.

line-num
Binary fullword holding the relative record number to be
replaced.

 Error Conditions:

PIB-STATUS Meaning

PIB-EOF The line number is out of bounds.

PIB-FUNCTION The edit buffer is not assigned to the process.

FCS-SCRATCH - Edit: Scratch Buffer

Use the FCS-SCRATCH function to erase (scratch) an edit buffer that has
already been opened by the program.

Syntax:

CALL "TIPFCS" USING FCS-SCRATCH

 file-pkt

Where:

FCS-SCRATCH
 Function code from the TC-FCS copybook.

file-pkt
Logical file name packet identifying the edit buffer.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The edit buffer is not assigned to the process.

Additional Considerations:

 TIP creates edit buffers as "permanent" files - this prevents their
disappearance if a system crash occurs. Since they are permanent
files, they must be explicitly scratched to erase them.

TIP Programming Reference

234 Proprietary IP-622

TIPFCS for Library Files

TIP implements a "library" access method that is functionally compatible
with mainframe libraries. A mainframe library is a partitioned data set that
contains elements or members. Each member contains data that is stored
in fixed length lines (usually simple text data).

In the TIP implementation, each named element is a separate Unix file
(the element name is used as the filename). Element names are limited to
8 characters (for compatibility with the mainframe).

Libraries are defined as logical files in the TIP catalog by using the smfile
program to associate a library name (again 8 character limit) with a
particular Unix file directory name. Elements created within that "library"
appear as file within that directory.

When a library element is opened for reading, the corresponding Unix file
is opened for input. When a library element is opened for writing, a new,
empty temporary file is created and all data is written to this file. When the
user subsequently closes this temporary file, it will replace the library
element (file). Users currently accessing the element are not affected.
This is analogous to the mainframe scheme where the latest element is
flagged ―active‖ and the old element is flagged ―deleted‖.

In TIP/30 it was only possible to have one element in a library open for
output at a time. In TIP it is possible to have many elements in a library
open for output. Only one user may have any particular element open for
output at time.

Library elements contain lines of data that are up to 128 bytes in length.
TIP assumes that the record area that is designated by the program for
read or write operations is 128 bytes long. Lines are physically stored with
trailing spaces removed and a carriage-return and linefeed character
appended to each line.

TIP supports the following function codes for library elements:

 Function Description

FCS-OPEN Open library element.

FCS-CLOSE
Close library element. If reading: de-access file. If
writing: the old element is replaced by the latest
element, this activates the latest element.

FCS-GET Get next input record (line).

FCS-PUT Write next output record (line).

FCS-NOUP
Close library element and cancel update. If
reading: de-access file. If writing: old element is
unchanged, latest element is removed, the latest

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 235

 Function Description

element is never activated.

Library File Descriptor

The layout of the FILE-DESCRIPTOR packet for library files is described
in the copybook TC-FDES in the TIP library:

TC-FDES copybook

The following is a description of the fields in the TC-FDES copybook:

FDES-user id
The group name (or user name) associated with the TIP
definition for the library file.

 If this field is spaces or low-values, TIPFCS will perform a
"standard order of search" for the correct definition entry to
reference.

FDES-CATALOG
Logical file name for the library.

 This field normally contains the same value as the
following field (FDES-FILE-NAME), although the library
open routines will accept a logical file name in either this
field or the next.

 If both fields are empty, the name in the file name packet,
file-pkt, is used on the FCS-OPEN call.

FDES-FILE-NAME
Logical file name for the library.

FDES-PASSWORD
This field is not implemented for the library access method
and is ignored.

FDES-FCS-CLASS
This field is not implemented for the library access method
and is ignored.

FDES-FCS-TYPE
Library element type codes. This field in not implemented
for TIP library access and is ignored. It was used in TIP/30
to allow a library directory read or a library element read.
Because a library is implemented as a directory, it is easy
to get a directory listing via Unix or the TLIB transaction.

TIP Programming Reference

236 Proprietary IP-622

FDES-FCS-PERM
Specified when the element is opened. The default access
is read.

 If read access desired, set to "R".

 If write access desired, set to "W".

FDES-ELEMENT
Element (module) name within library. This field contains
the actual element name.

FDES-COMMENTS
Comments (stored in element header record).

FDES-DATE
Date module was created: "YY/MM/DD" format.

FDES-TIME
Time module was created: "HH:MM" format

FCS-CLOSE - Library: Close Element

The FCS-CLOSE function closes the specified library element and
removes the entry for the file from the Active File Table (AFT) for the
process. If the element was opened for output, it becomes active and
replaces any old copies of the element.

Syntax:

CALL "TIPFCS" USING FCS-CLOSE

 file-pkt

Where:

FCS-CLOSE
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

Error Conditions:

 PIB-STATUS Meaning

PIB-FUNCTION File is not assigned to the program.

FCS-GET - Library: Read Next Line

The FCS-GET function reads the next line of an input library element.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 237

Syntax:

CALL "TIPFCS" USING FCS-GET

 file-pkt

 record

Where:

FCS-GET
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
Record area where line data is placed.

 The record area is a fixed size of 128 bytes. Records are
padded at the end with sufficient spaces to fill 128
characters (the carriage-return and linefeed characters are
removed when the data is placed in the program's record
area).

Error Conditions:

 PIB-STATUS Meaning

PIB-EOF
The end of the element has been
reached.

PIB-FUNCTION The file is not assigned to the program.

PIB-IO-ERROR An I/O error occurred on the disk.

PIB-WRONG-MODE
The library file was not opened for input
processing.

FCS-NOUP - Library: Close Element (No update)

The FCS-NOUP function is similar to a FCS-CLOSE function. If the
element is currently open with "Write" access, the element will not be
written - the previous version of the element, if any, remains the current
element.

Syntax:

CALL "TIPFCS" USING FCS-NOUP

 file-pkt

Where:

FCS-NOUP
Function code from the TC-FCS copybook.

TIP Programming Reference

238 Proprietary IP-622

file-pkt
Logical file name packet.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION File is not assigned to the program.

FCS-OPEN - Library: Open Element

The FCS-OPEN function assigns the library to the issuing process and
makes an appropriate entry for the logical file in the Active File Table
(AFT).

Syntax:

CALL "TIPFCS" USING FCS-OPEN

 file-pkt

 file-desc

Where:

FCS-OPEN
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

file-desc
File descriptor packet (see earlier description of the TC-
FDES library descriptor packet).

Example:

... in the program's work area ...

 02 LIB-FDES. COPY TC-FDES.

 02 LIB-LFN PICTURE X(9).

 02 LIB-REC PICTURE X(128).

 02 LIB-HEADER PICTURE X(256).

 ... in the PROCEDURE DIVISION ...

 MOVE SPACES TO LIB-FDES

 MOVE "INFILE" TO LIB-LFN

 MOVE "TIP" TO FDES-FILE-NAME

 MOVE "R" TO FDES-FCS-PERM

 MOVE "S" TO FDES-FCS-TYPE

 MOVE "TC-FDES" TO FDES-ELEMENT

 CALL "TIPFCS" USING FCS-OPEN

 LIB-LFN

 LIB-FDES

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 239

The above example opens the element "TC-FDES" in the library named
"TIP" for read operations (FDES-FCS-PERM).

Note: The name in the LFN file packet ("INFILE") can be any name the

programmer chooses the TIP file system uses the name to determine
which file the program is referring to during subsequent CALLs to
TIPFCS.

Error Conditions:

PIB-STATUS Meaning

PIB-IO-ERROR
An I/O error occurred while opening the
file.

PIB-DUP-AFT-NAME
A file with the name given in FILE-PKT is
already assigned to the terminal.

PIB-DUP-KEY

An element of that name already exists in
the library.

This warning is given when an existing
element is opened with "Write" access. The
program may choose to ignore this error -
and thereby update an existing element
when the FCS-CLOSE is issued later.

PIB-FUNCTION
An attempt was made to open a file that is
not a library.

PIB-LOCKED
"Write" access is being requested and the
element has already been opened for
output.

PIB-NOT-FOUND
The requested library has not been defined
in TIP. (Use smfile to define it.)

FCS-PUT - Library: Write Line

The FCS-PUT function will output the next line (sequential fashion) to the
library element. Trailing spaces are removed from the data supplied by
the program (128 bytes!) and a carriage return and linefeed character are
appended to the line in the file.

Syntax:

CALL "TIPFCS" USING FCS-PUT

 file-pkt

 record

TIP Programming Reference

240 Proprietary IP-622

Where:

FCS-PUT
Function code from the TC-FCS copybook.

file-pkt
Logical file name packet.

record
128 character record area.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The File is not assigned to the program.

PIB-IO-ERROR
An I/O error occurred on the file.

PIB-WRONG-MODE
The library file was not opened for output
processing.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 241

Transaction Suspend (TIPSUSPEND)

This call has the ability to suspend a running transaction and then later
rejoin that transaction and complete it. You can only suspend a
transaction if you have actually started one by locking some data record.
And you can only rejoin a previously suspended transaction if your
program has done no locking or updates.

The important data fields are as follows:

 WORKING-STORAGE or LINKAGE SECTION.

 05 TRAN-TIME-OUT PIC 9(8) BINARY.

 05 TRANS-ID PIC X(24).

To suspend the current transaction:

CALL “TIPSUSPEND” USING FCS-PUT, TRANS-ID, TRAN-TIME-OUT

This will put the current transaction into a suspended state for up the
number of seconds in TRAN-TIME-OUT. If the transaction is not resumed
within that time frame it will be assumed to be aborted and the data will
be rolled back. The ‗transacciton Id‘ is returned in TRANS-ID as a text
string and this valued must be used later to resume the transaction.

To rejoin a suspended transaction:

CALL “TIPSUSPEND” USING FCS-GET, TRANS-ID

Possible status codes.

PIB-NOT-HELD no transaction active so nothing to suspend

PIB-NOT-FOUND
could not find a suspended transaction with the
given identifier

PIB-FULL
Can not join a suspended transaction because the
program has already started a new transaction.

The tipix.conf parameter TRANSUSPEND can be used to specify the
default maximum time to suspend a transaction. Without that the default
is 15 seconds.

TIP Programming Reference

242 Proprietary IP-622

TIP Print Facility (TIPPRINT)

TIP native mode programs may call the subroutine TIPPRINT to perform
printing functions. TIPPRINT directs print lines to any of the following
"destinations":

 an auxiliary (attached) printer

 a terminal (in full screen display mode)

 a logical printer (printers are defined to TIP using the smprint utility
program; the "printer" may, in fact, be redirected to other programs or
devices in the Unix system.

The user interface with TIPPRINT is similar to the interface used in
standard TIPFCS CALLs. The first three parameters — function-code,
filename, and record — are common to both interfaces - the fourth
parameter of TIPPRINT, however, supplies the name of a user supplied
work area that TIPPRINT uses as a buffer and/or work area. TIPPRINT
uses the filename (2nd parameter) to determine the destination of the
print file (see list above).

A TIP native mode program issues CALLs to the TIPPRINT subroutine to
perform the following functions:

Function Description

OPEN Initialize the interface to TIPPRINT.

PUT Pass a single print line image to TIPPRINT.

FLUSH Force TIPPRINT to empty its internal buffer.

CLOSE Terminate the interface with TIPPRINT

The program provides the print lines and TIPPRINT ensures their delivery
to the specified printer.

The following sections describe the various CALLs to TIPPRINT. The
CALLs are described in the sequence that they are normally encountered
in a program; namely, OPEN, PUT, FLUSH, and CLOSE.

TIPPRINT Print Destinations

Printers are defined in the TIP system by using the smprint utility
program. Printers are assigned logical names and these logical names
are defined in terms of the actual final routing of the print lines. For
example, a printer PRNTR must be defined for use by the system;
however, the definition of "PRNTR" may be defined to route the print lines
(as standard input or via a pipe) to a specific Unix system command (for
example: lp or some other spooling system).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 243

The TIPPRINT subroutine can direct print lines to a number of potential
destinations. Programs that call TIPPRINT provide printer destination
information when opening the interface to specify where the print lines are
to be sent. This section describes the various supported destinations and
also discusses special information that may interest the programmer.

The second parameter on all CALLs to TIPPRINT is a standard nine-byte
filename packet. This filename packet is the primary place where the
program can indicate the desired destination of the output. In some
cases, the program may choose to supply additional destination
information in the "INFO-PKT" that is the third parameter passed on a
FCS-OPEN function call.

ROLL - Line by Line Terminal Output

Specifying the character string "ROLL" as a destination tells TIPPRINT to
"roll" (scroll) the generated lines of output to the terminal that is calling
TIPPRINT. In this case, TIPPRINT passes the data portion of the
generated print lines to the standard TIP output routine "ROLL".

ROLL will move the contents of the terminal up one line (the top line
disappears off the screen) and then outputs the current data to the last
line of the terminal. This print destination is often used to test or debug
print programs when a printer is not available. The ROLL subroutine is
described in the MCS section of this documentation. ROLL handles only
80 characters of data; using TIPPRINT with a destination of "ROLL"
results in print lines being truncated at 80 characters.

AUX0 - Full Screen Output

Specifying a destination of "AUX0" tells TIPPRINT to output the print data
one screen full at a time. TIPPRINT accumulates print lines until there are
N-1 lines (N is the number of rows on the terminal).

TIPPRINT then outputs the N-1 lines of data (truncated to the width of the
screen if necessary) on lines two through N of the terminal where the
program is executing and automatically displays a continuation prompt on
the first line of the terminal:

Continue? ►Yes ►No

Reply:

 Yes or F2 if you wish to see the next screen full of information,

 No or MSG WAIT to return PIB-BREAK status to the calling program
and thus (presumably) halt printing as soon as possible.

AUX0 is the default print destination for many of the TIP utility programs
that display information on the terminal.

TIP Programming Reference

244 Proprietary IP-622

AUX1 - Auxiliary Device

You may direct TIPPRINT output to a terminal auxiliary printer by using
the device name AUX1.

TIPPRINT examines the TIPPRINTAUX environment variable to
determine the local terminal printer type:

Type Description

HP for a Hewlett-Packard LaserJet printer

EPSON for an EPSON dot-matrix printer

D630 for a Diablo 630 printer

LP

for a Unix spooler lp

If an application uses TIPPRINT to output to a
logical printer named "AUX1", and

TIPPRINTAUX=LP is specified,

then TIPPRINT uses the TIP printer definition
for "PRNTR" (as defined with smprint).

PS[=filename]

for a Postscript printer.

You may also specify a filename to send
ahead of the print data by specifying
PS=filename.

If no postscript filename is supplied, the default
postscript file - named "land" - supplied with
TIP is used.

Example: TIPPRINTAUX=PS=arcland

You can also specify the following options. (Separate options with a
colon.)

Option Meaning

TOF
Top of Form. TIPPRINT will supply an initial form
feed if the application doesn't.

BOF
Bottom of Form. TIPPRINT will supply a final form
feed if the application doesn't.

LPP=n
Lines Per Page. Specify the number of lines on a
logical page.

Example:

TIPPRINTAUX=PS=arcland:TOF:BOF:LPP=43

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 245

FCS-CLOSE - Close TIPPRINT Interface

When the program has finished generating print lines it must close the
interface to TIPPRINT. The CLOSE function automatically performs the
FLUSH function (see previous section).

Syntax:

CALL "TIPPRINT" USING FCS-CLOSE

 file-pkt

 dummy

 buffer

Where:

FCS-CLOSE
This function code (normally defined via the supplied
copybook TC-FCS) indicates that the desired function is to
CLOSE the TIPPRINT interface.

file-pkt
Standard (9-byte) filename packet that specifies the printer
that TIPPRINT is to use. This is the same packet as
described in the previous section (TIPPRINT: Open).

dummy
The third parameter is a dummy parameter - you could use
the usual line packet. It is present only to preserve
symmetry with the other calls to TIPPRINT.

 You cannot supply a line of print data on a CLOSE call as
TIPPRINT ignores the parameter.

buffer
The buffer that is assigned for TIPPRINT's use as
described in the previous section (see FCS-OPEN Open
TIPPRINT Interface for more information).

Additional Considerations:

 The CLOSE operation delivers any buffered print data that is in the
TIPPRINT buffer. You do not need to explicitly FLUSH the buffer
before calling the CLOSE function. Once the interface to TIPPRINT is
closed you may reopen it with a different printer specification.

Error Conditions:

PIB-STATUS Meaning

PIB-BREAK
There may be a problem with the printer (see
previous section TIPPRINT: Put).

TIP Programming Reference

246 Proprietary IP-622

FCS-FLUSH - Flush TIPPRINT Buffer

Since TIPPRINT may be buffering the print lines that are being passed by
the user program, your program may need to force a FLUSH of the
TIPPRINT buffer.

An example of this situation occurs during the printing of cheques. The
program may "print" several lines (via TIPPRINT) and proceed to update
a master file to indicate that a cheque was printed for the customer. If it
could not be verified that the cheque was printed and a system crash
occurred before the cheque was actually printed, the master file would not
reflect the real world situation. In this situation, the program can issue a
FLUSH request to TIPPRINT after every complete cheque is printed and
in effect "wait" to be certain that printing was complete.

The FLUSH request should be issued after each complete cheque and
not after every line of the cheque!

TIPPRINT automatically performs a FLUSH operation whenever the
TIPPRINT interface is closed by the program. It is not necessary for your
program to issue a FLUSH before issuing a CLOSE to TIPPRINT.

Syntax:

CALL "TIPPRINT" USING FCS-FLUSH

 file-pkt

 dummy

 buffer

Where:

FCS-FLUSH
This function code (normally defined via the supplied
copybook TC-FCS) indicates that you wish to FLUSH the
TIPPRINT buffer.

file-pkt
Standard (9-byte) filename packet that is used to specify
the printer that TIPPRINT is to use. This is the same
packet as described in the previous section (see FCS-
OPEN Open TIPPRINT Interface for more information.)

dummy
The third parameter is a dummy parameter (the usual line
packet could be used) that is present only to preserve
symmetry with the other calls to TIPPRINT.

 You cannot supply a line of print data on a FLUSH call -
TIPPRINT ignores the parameter.

buffer
The buffer that is assigned for TIPPRINT's use as
described in the previous section (see FCS-OPEN Open
TIPPRINT Interface for more information.)

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 247

Additional Considerations:

 The FLUSH operation delivers any buffered print data that is in the
TIPPRINT buffer (this normally occurs when the buffer is full).

 There is no need to FLUSH the buffer unless your program must be
certain that the print lines that have been passed across the
TIPPRINT interface have in fact been printed.

Error Conditions:

PIB-
STATUS

Meaning

PIB-BREAK
There may be a problem with the printer (see
section TIPPRINT: Put for more details).

FCS-OPEN - Open TIPPRINT Interface

The program must first establish the interface to the TIPPRINT subroutine
by issuing a call to TIPPRINT with a function code of "FCS-OPEN". This
call:

 Initializes the TIPPRINT interface

 Establishes the desired print destination and

 Specifies printing options that you require.

Syntax:

CALL "TIPPRINT" USING FCS-OPEN

 file-pkt

 info-pkt

 buffer

Where:

FCS-OPEN
This function code (normally defined via the supplied
copybook TC-FCS) indicates that the desired function is to
OPEN the interface.

file-pkt
Standard (8+1 byte) filename packet that is used to specify
the output device that TIPPRINT is to use.

 See also description of TIPPRINT Print Destinations on
page 242 for further details.

 The filename may be the name of a batch print file (for
example, PRNTR) or may be the name of an auxiliary print
device.

TIP Programming Reference

248 Proprietary IP-622

info-pkt
 Information packet required ONLY on the call to
TIPPRINT with the FCS-OPEN function.

 The supplied copybook TC-PRINT defines the format of
the information packet:

buffer
The fourth parameter on the call to TIPPRINT with a FCS-
OPEN function code identifies the buffer that the user
program must provide for TIPPRINT to use.

 This buffer must be a minimum of 1,280 bytes and may be
a maximum of 3,584 bytes (any additional space is
wasted!).

Note: You must fullword align this buffer.

 The program need not initialize this buffer - TIPPRINT
manages this area directly.

 The program must not modify any field in this buffer from
the time it passes an OPEN function to TIPPRINT to the
time it passes a CLOSE function to TIPPRINT.

Warning:
Programs should not make any assumptions about any
observed contents of this buffer!

 The supplied copybook TC-PBUFR defines the format of
the buffer.

TC-PRINT copybook
05 INFO-PKT COPY TC-PRINT.

*

* COPY ELEMENT FOR TIPPRINT INFORMATION PACKET

 10 PRINT-BUF-LEN PICTURE 9(4) BINARY SYNC.

 10 PRINT-PAG-LEN PICTURE 9(4) BINARY SYNC.

 10 PRINT-ERR-TERM PICTURE X(4).

 10 PRINT-TOP-OF-FORM PICTURE X.

 10 PRINT-LINE-FEED PICTURE X.

 10 PRINT-NOW-PRINTING PICTURE X.

 10 PRINT-UPPER-CASE PICTURE X.

 10 PRINT-RESERVED PICTURE X.

 10 PRINT-VFB-INFO PICTURE X.

 10 PRINT-FULL-FILE-INFO PICTURE X.

 10 PRINT-TITLE PICTURE X.

 10 PRINT-SUBJECT PICTURE X(20).

 10 PRINT-FULL-FILE-NAME PICTURE X(20).

 10 PRINT-MS-DOS-FILE-NAME

 REDEFINES PRINT-FULL-FILE-NAME.

 15 PRINT-MS-DOS-DRIVE PICTURE X.

 15 PRINT-MS-DOS-FILE PICTURE X(16).

 15 PRINT-MS-DOS-EXTENSION PICTURE X(3).

 10 PRINT-VFB-CHANNEL PICTURE 9(4) BINARY SYNC

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 249

 OCCURS 15 TIMES.

The following is a description of the fields that make up the TC-PRINT
copybook:

PRINT-BUF-LEN
Used to specify the length of the buffer that the user
program is providing for TIPPRINT to use to buffer print
lines (the fourth parameter).

 The program must move the length of the buffer that has
been reserved for TIPPRINT's use to this field before
issuing the FCS-OPEN function.

 The minimum buffer size is 1,024 bytes; the maximum
(usable) buffer size is 3584.

PRINT-PAG-LEN
The desired number of lines per page.

 TIPPRINT will return the status PIB-OVERFLOW
whenever the TIPPRINT interface has printed this many
lines.

 Your program may ignore this overflow status OR may use
it as a signal to output headings.

PRINT-ERR-TERM
Specifies the name of the terminal that is to receive an
error message if an error condition occurs.

 Default: terminal that is invoking TIPPRINT.

 The value specified may be:

term The name of a valid terminal in the network
*CON To indicate the UNIX operator console or,
*RET To indicate that no error message is to be sent.

TIPPRINT will not output any error message and
will simply return to the calling program with PIB-
BREAK status in the PIB.

PRINT-TOP-OF-FORM
You can now specify the following options:

Y TIPPRINT ensures that there is a skip to top of
form both before printing output and after
completion of printing.

 If there are no skips to top of form present at the
beginning and ending of output, TIPPRINT will
insert them.

 If there are skips to top of form present at the
beginning and ending of output, nothing is inserted.

TIP Programming Reference

250 Proprietary IP-622

N TIPPRINT ensures that, if the first output is a skip
to top of form, it is removed. If the last output is a
skip to top of form, TIPPRINT removes it.

T TIPPRINT ensures that the first output is a skip to

top of form and that there is no skip to top of form
at the ending of output.

B TIPPRINT ensures that there is no skip to top of

form at the beginning of output and that there is a
skip to top of form at the ending of output.

space The value specified in the "Form Feed

Requirements" of the terminal definition will be
used as the PRINT-TOP-OF-FORM value if a
terminal definition (see smterm) exists for the
current terminal and if the value of Form Feed
Requirements is non-blank. Otherwise, the value of
the system parameter PRINT-TOP-OF-FORM from
the tipix.conf file will be used.

PRINT-LINE-FEED
Specify as either "Y" or "N" or space. Some printers
automatically provide a "free" line feed character whenever
a full screen of data is transferred from the terminal to the
printer.

 Set this field to "Y" or "N" to indicate whether TIPPRINT is
to insert a line feed character at the end of every data
transfer to the communications printer.

PRINT-NOW-PRINTING
Specify as either "N" or "Y" (default).

 If this field is not an "N", TIPPRINT displays the "NOW
PRINTING" message on the terminal when the call to
OPEN TIPPRINT is issued. The message will be erased
when the TIPPRINT interface is CLOSEd.

 If you set this field to "N", the "NOW PRINTING" message
will not be displayed on the terminal.

 The NOW PRINTING message is more than a
convenience message. If the NOW PRINTING message is
suppressed there is no way you can interrupt the printing
(i.e. by pressing MSG WAIT).

 The NOW PRINTING message is often suppressed
because the program is using a screen format. In this
case, the program normally issues its own version of this
message (for example by using a call to TIPMSGE).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 251

PRINT-UPPER-CASE
Specify as either "Y" or "N" or space.

Y Indicates that TIPPRINT is to translate alphabetic
characters to uppercase.

N Indicates that no translation is to occur

space Indicates that the system default is to be taken (no

translation).

PRINT-RESERVED
This field is reserved for future use and is currently not
examined by TIPPRINT.

PRINT-FULL-FILE-INFO
When printing to a MS-DOS file:

 If a six-character filename is enough, put the disk drive
letter, a colon, and the 6-character filename in the FILE-
PKT field. For example "C:FI.EXT"If you don't specify an
extension, it is assumed to be ".PRN". For example,
"C:FILNAM" implies "C:FILNAM.PRN".

 If a six-character name is not enough, move spaces to
FILE-PKT, and code a "D" in PRINT-FULL-FILE-INFO.

D Print to a MS-DOS file using a long filename in the
PRINT-FULL-FILE- NAME field.

 In either case, TIP/fe must be running in smart mode.

PRINT-TITLE
If you set this field to a "Y", TIPPRINT expects to find up to
20 characters of program supplied data in the field PRINT-
SUBJECT.

 TIPPRINT will generate a title page (similar to a WRTSML
that includes the subject and user id, etc.)

 If you set this field to an "S" (indicating that data is in the
PRINT-SUBJECT field), TIPPRINT will suppress the title
page for non-batch destinations and will generate a title
page for batch printer destinations.

 If you use any other value in this field the contents of
PRINT-SUBJECT will be ignored and no title page will be
produced.

PRINT-SUBJECT
See prior description of PRINT-TITLE.

TIP Programming Reference

252 Proprietary IP-622

PRINT-FULL-FILE-NAME
This field is used when printing to an MS-DOS file with a
long filename. It contains smaller fields containing:

1. the disk drive letter (1 byte)

2. path and filename (16 bytes)

3. extension (3 bytes).

 This field is only used if PRINT-FULL-FILE-INFO contains
a "D" and FILE-PKT does not contain a ":".

TC-PBUFR copybook

You may use the supplied copybook TC-PBUFR in your program's work
area to define the buffer:

COPY TC-PBUFR.

* TIPPRINT BUFFER PACKET

* --- USER PROGRAM SHOULD NOT MODIFY THESE FIELDS ---

05 TIPPRINT-BUF.

 10 FILLER PICTURE 9(8) BINARY SYNC.

 10 FILLER PICTURE X(2556).

05 TIPPRINT-BUFFER REDEFINES TIPPRINT-BUF.

 10 BU-PAGE-LENGTH PICTURE 9(4) BINARY SYNC.

 10 BU-ICAM-STATUS PICTURE X.

 10 FILLER PICTURE X(2557).

The following is a description of the fields that make up the TC-PBUFR
copybook:

BU-PAGE-LENGTH

 While the TIPPRINT interface is open, this field contains
the number of lines per page that TIPPRINT has
determined.

 This field is intended for informational purposes only; do
not modify it in your program.

BU-ICAM-STATUS
When PIB-BREAK status is set, this field may contain a
detailed status code that indicates the reason for delivery
notification failure:

0 Device Down.
1 Read/Write Error.
2 Out of Forms.
3 End of Tape.
4 Device Off line.
B Line Down.
C Terminal Down.
D Invalid Destination.
E No Network Buffers.
F Disk Error.
G Wrong Buffer Length.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 253

? Unknown Status.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION
Invalid parameter. Function code is not
FCS-OPEN, FCS-PUT, FCS-FLUSH or
FCS-CLOSE.

PIB-IO-ERROR Invalid parameter list.

PIB-LOCKED

TIP may return this status if your program
specified "*RET" in the PRINT-ERR-
TERM field in the info packet and the
destination printer is locked when the
FCS-OPEN is issued.

If you do not set PRINT-ERR-TERM to
"*RET", TIPPRINT will display the
message "Waiting for printer" on the
terminal and will wait for the printer to be
available before returning to the program.

PIB-NO-MEM
Buffer length too small (less than 1024
bytes).

PIB-NOT-FOUND Destination or error terminal not found.

FCS-PUT - Output Print Line

User programs call the TIPPRINT subroutine with a function of FCS-PUT
to output each print line. A description appears below of the format of the
print line. The program formats the print line with whatever text is desired,
inserts an appropriate device independent carriage control code and
passes the print line to TIPPRINT for delivery.

You must be aware that TIPPRINT may be accumulating print lines in the
buffer that is provided as a TIPPRINT work area. This means that the line
that is passed on a PUT call to TIPPRINT may not be physically printed at
the time the call is issued (see also the description of the FCS-FLUSH
function call to TIPPRINT).

Syntax:

CALL "TIPPRINT" USING FCS-PUT

 file-pkt

 print-line

 buffer.

TIP Programming Reference

254 Proprietary IP-622

Where:

FCS-PUT
This function code (normally defined via the supplied
copybook TC-FCS) indicates that the desired function is to
output a print line to the interface.

file-pkt
Use this standard (nine-byte) filename packet to specify
the printer that TIPPRINT is to use. This is the same
packet as described in the previous section (TIPPRINT:
open).

print-line
This is the print line (packet) that contains the data to be
printed (and the carriage control to use).

 You may use the supplied TC-PLINE copybook to define
this area:

buffer
This is the buffer that your program provides for TIPPRINT.

TC-PLINE copybook

COPY TC-PLINE.

*

* COPY ELEMENT FOR TIPPRINT LINE PACKET

05 PRINT-LINE.

 10 LI-LENGTH PICTURE 9(4)

 BINARY.

 10 FILLER PICTURE XX.

 10 LI-DI-CONTROL PICTURE X.

 88 LI-DI-HOME VALUE X'27'.

 88 LI-DI-SPACE1 VALUE X'01'.

 88 LI-DI-SPACE2 VALUE X'02'.

 88 LI-DI-SPACE3 VALUE X'03'.

 10 LI-DATA PICTURE X(250).

The following is a description of the fields that make up the TC-PLINE
copybook:

PRINT-LINE
A variable length record containing a length field, a DI
code (for carriage control), and the data to be printed.

 The above copybook defines the print line as a fixed length
area for convenience only.

 Your program may establish several print lines of varying
length for specific purposes (for example, headings).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 255

LI-LENGTH
The length of the entire print line packet.

 The length specified must include the five bytes preceding
the actual data. In the copybook for example, you would
move 137 to LI-LENGTH.

 TIPPRINT supports a maximum length of 250 bytes for
data to be printed.

 If the field LI-LENGTH contains a value greater than 255
(250+5), TIPPRINT truncates the print line to 250
characters.

 The minimum specification for this field is a value of five
bytes. Some carriage control codes cannot specify data at
the same time; that is, skip to top of page: X'27'.

LI-DI-CONTROL
This field contains the Device-Independent Control
character that indicates the desired type of printer spacing
used when printing this print line.

 Standard FORTRAN skip codes are:

space Single space
0 Double space
- Triple space
I Skip to the top of a new page

 Additional special codes are:

B Not implemented in TIP. Output the data portion of
the print line using BLOCK characters (to create
title or separator pages).

 Within your line of data, a carriage return (X'0D'), means
begin a new line of block characters.

V Output the contents of the print line to the device
without any translation or other interpretation.

 This allows you to send arbitrary character codes to a
printer - some printers' react to character sequences to
perform advanced functions.

 If the print destination is AUX0 (the screen) or ROLL (the
screen with scrolling), the print line is discarded and PIB-
GOOD is returned.

LI-DATA
This field contains the text of the print line.

TIP Programming Reference

256 Proprietary IP-622

TC-DI copybook:

The supplied copybook TC-DI defines some commonly used carriage
control codes. Since this copybook contains VALUE clauses you must
place it in the WORKING-STORAGE SECTION of your program.

COPY TC-DI.

*

* DEFINE CODES USED FOR PRINTER CARRIAGE CONTROL

05 TC-DI-CODES.

 10 TC-DI-HOME PICTURE X VALUE X"27".

 10 TC-DI-PRINT-SPACE1 PICTURE X VALUE X"01".

 10 TC-DI-PRINT-SPACE2 PICTURE X VALUE X"02".

 10 TC-DI-PRINT-SPACE3 PICTURE X VALUE X"03".

 10 TC-DI-PRINT-SPACE4 PICTURE X VALUE X"04".

 10 TC-DI-PRINT-SPACE5 PICTURE X VALUE X"05".

 10 TC-DI-PRINT-SPACE6 PICTURE X VALUE X"05".

 10 TC-DI-PRINT-SPACE7 PICTURE X VALUE X"07".

 10 TC-DI-PRINT-SPACE8 PICTURE X VALUE X"08".

 10 TC-DI-PRINT-SPACE9 PICTURE X VALUE X"09".

 10 TC-DI-PRINT-SPACE10 PICTURE X VALUE X"0A".

 10 TC-DI-PRINT-NO-SPACE PICTURE X VALUE X"10".

 10 TC-DI-SPACE1 PICTURE X VALUE X"51".

 10 TC-DI-SPACE2 PICTURE X VALUE X"52".

 10 TC-DI-SPACE3 PICTURE X VALUE X"53".

 10 TC-DI-SPACE4 PICTURE X VALUE X"54".

 10 TC-DI-SPACE5 PICTURE X VALUE X"55".

 10 TC-DI-SPACE6 PICTURE X VALUE X"55".

 10 TC-DI-SPACE7 PICTURE X VALUE X"57".

 10 TC-DI-SPACE8 PICTURE X VALUE X"58".

Error Conditions:

PIB-STATUS Meaning

PIB-FULL

TIP returns this status if your program has a
serial resource locked and this FCS-PUT
caused the TIPPRINT buffer to be full. Even
though this status was returned, TIPPRINT
accepted the print line and placed it in the
buffer.

Normally TIPPRINT would flush the buffer to
the device at this point, but since there is a
serial resource locked, TIPPRINT warns the
program that it cannot flush the buffer right
now.

If the program issues another FCS-PUT with
serial resources still locked, that FCS-PUT
will be rejected with PIB-LOCKED status.

If an FCS-FLUSH or FCS-CLOSE is issued
with serial resources locked, TIPPRINT will
go ahead and flush the buffer and TIP will
probably abort the program and issue a

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 257

PIB-STATUS Meaning

resources locked, waiting message.

This PIB-STATUS is applicable only to non-
batch print destinations.

PIB-LOCKED

TIP returns this status if the program issues
further FCS-PUT functions when the
TIPPRINT buffer is already full and serial
resources are locked. TIPPRINT ignores the
print line.

This PIB-STATUS is applicable only to non-
batch print destinations.

PIB-NOT-
FOUND

TIP returns this status if the device-
independent carriage control character in the
print-line is an unrecognized value.
TIPPRINT ignores the print line.

PIB-OVERFLOW

TIP returns this status if TIPPRINT
determines that the number of lines per page
(as declared in the INFO packet on the
preceding OPEN) has been exceeded.

PIB-OVERFLOW status will continue to be
returned on subsequent FCS-PUT requests
until such time as TIPPRINT receives a
command to home the paper.

This is not an error condition - merely
overflow notification. Your program may
choose to ignore this event as it may be
counting its own lines or may use this as a
signal to output page headings.

PIB-BREAK

TIP returns this status when the printer is no
longer available due to a delivery notification
error or because you have interrupted the
TIPPRINT process and have indicated that
you do not want it to continue.

You may interrupt TIPPRINT processing
(presuming that a "NOW PRINTING"
message has been displayed!) by pressing
MSG-WAIT. TIPPRINT will interrupt (break)
before the next data transfer to the print
device.

TIPPRINT displays the BREAK prompt as follows:

Break - Continue? ►YES ►NO

TIP Programming Reference

258 Proprietary IP-622

If you enter "NO" to this break message, TIP returns a PIB-BREAK status
to the program.

 Note: It is imperative that the program check for PIB-BREAK status after every
FCS-PUT.

TIP also returns PIB-BREAK status if, for example, the printer is out of
paper. The program should take appropriate action; it should stop printing
in any case.

If an I/O error occurs on an auxiliary device, TIP sends a message to the
error reporting terminal (as specified in the information packet supplied at
the time TIPPRINT was OPENed). The message identifies the error and
the name of the terminal associated with the error.

The text of the message is as follows:

PRINT ERROR AT ____, ERROR = '_______'

If this condition occurs, PIB-BREAK status is returned to the program to
indicate that the printed output has been broken.

Accessing TIP Journal Files

The TIP File Control System (FCS) automatically writes BEFORE and/or
AFTER images of updated records to the TIP Journal file. Parameters
specified for each file with TIP Enterprise Manager (See the Defining
Files section of the TIP/em documentation) control the writing of before
and after images.

To write user records to the journal file from an online transaction, use the
TIPFCS FCS-JOURNAL function. Such user records can be written to the
journal file, for example, to mark certain exceptional events or to be able
to monitor transaction usage.

To read all journal or QBL file records from a batch program, see
TIPJRNOP, TIPJRNCL, and TIPJRNGT.

The format of a user record in the journal file is entirely at the discretion of
the program writing the record. The only restriction is that the record must
contain a proper record prefix (described in the following section).

Journal and QBL File Record Format

The TIP Journal file contains variable length records. Each record has a
journal prefix that contains a record length field, record type field and
assorted information about the data that may or may not follow the prefix.
Some journal records contain NO data - they are simply a prefix

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 259

The copybook TC-JRNC is provided to supply key constant values for the
journal record layout. Namely the journal record prefix length, the
maximum journal record data length and the maximum journal record
length.

The Quick Before Look (QBL) files have the same format as the journal
files.

TC-JRNC copybook:
*

* *

* TIP JOURNAL FILE RECORD CONSTANTS *

* Based on copybook TC-JRN *

* *

*

* JRN-PREFIX-LENGTH LENGTH OF JOURNAL/QBL RECORD HEADERS

* JRN-MAX_DATA-LENGTH LENGTH OF MAXIMUM RECORD DATA STORAGE

* JRN-MAX_REC-LENGTH LENGTH OF MAXIMUM RECORD STORAGE

05 JRN-PREFIX-LENGTH PICTURE 9(8) COMP-4 VALUE 74.

05 JRN-MAX-DATA-LENGTH PICTURE 9(8) COMP-4 VALUE 8184.

05 JRN-MAX-REC-LENGTH PICTURE 9(8) COMP-4 VALUE 8250.

TC-JRN copybook:

The supplied copybook TC-JRN describes the layout of the various
records that may appear in the journal file.

*

* *

* TIP JOURNAL FILE RECORD DEFINITION *

* *

*

05 JRN-RECORD.

 10 JRN-PREFIX.

*

* JRN-REC-LEN LENGTH OF RECORD (INCL PREFIX)

* ZERO LENGTH IMPLIES END-OF-FILE

*

* JRN-REC-TYPE TYPE OF JOURNAL RECORD -

*

* AFTR - IMAGE OF A DATA RECORD AFTER UPDATE

* (INCLUDING LOGICAL DELETE)

* BEFR - IMAGE OF A DATA RECORD BEFORE UPDATE

* CKPT - NOTIFICATION A DATA FILE WAS CLOSED

* - NOTIFICATION A LIBRARY ELEMENT WAS

* READ -OR- WRITTEN

* DELT - IMAGE OF A MIRAM RECORD DELETED VIA RCB

* LGOF - TIP USER LOGOFF

* LGON - TIP USER LOGON

* NEW - IMAGE OF A NEW DATA RECORD THAT WAS ADDED

* PREN - NOTIFICATION OF END OF TRANSACTION PROG

* PRST - NOTIFICATION OF START OF TRANSACTION PROG

* STAT - TIP STATISTICS RECORD

TIP Programming Reference

260 Proprietary IP-622

* TREN - END OF TRANSACTION MARKER

* USER - USER WRITTEN JOURNAL RECORD

* - FORMAT DEFINED BY PROGRAM WHICH WRITES

* THE RECORD TO THE JOURNAL FILE

* PREP - NEW FOR 2 PHASE COMMIT

* RDYC - NEW FOR 2 PHASE COMMIT

* RDYA - NEW FOR 2 PHASE COMMIT

* COMM - NEW FOR 2 PHASE COMMIT

* ABRT - NEW FOR 2 PHASE COMMIT

* HDR - NEW EXPLICIT NAME FOR FILE HEADER/CONTROL RECORD

*

* JRN-UID - RECORD WRITTEN FOR THIS user id

* JRN-TRID - EXECUTING THIS TRANSACTION PROGRAM

* JRN-LFD - FILE LFD NAME

* JRN-FULL-DATE - DATE STAMP (YYYYMMDD) NEW 4 DIGIT YEAR

* JRN-TIME - TIME STAMP (HHMMSS)

* JRN-TID - RECORD WRITTEN FOR THIS TERMINAL

* JRN-DIRECT-BLK-NO - BLOCK NUMBER (RELATIVE FILES ONLY)

* JRN-ACCT - USER'S LOGON ACCOUNT NUMBER

* JRN-STATE

* RLBK - SET TO "R" IF THIS JOURNAL

* - RECORD WAS WRITTEN AS A RESULT OF

* - ONLINE ROLLBACK (TRANSACTION

* - ABORTED OR REQUESTED

* - ROLLBACK VIA PIB-LOCK-INDICATOR)

* NORM - SET FOR RECORD WRITTEN FOR NORMAL PROCESSING

/

 15 JRN-REC-LEN PICTURE 9(8)

 COMP-4 SYNC.

 15 JRN-GTRAN-ID.

 20 JRN-GTRAN-LOCAP PICTURE X(8).

 20 JRN-GTRAN-TRAN-NUM PICTURE 9(8) COMP-4.

 15 JRN-DIRECT-BLK-NO PICTURE 9(8) COMP-4.

 15 JRN-REC-TYPE PICTURE X.

 88 JRN-AFTR VALUE "A".

 88 JRN-BEFR VALUE "B".

 88 JRN-CKPT VALUE "C".

 88 JRN-DELT VALUE "D".

 88 JRN-LGOF VALUE "F".

 88 JRN-LGON VALUE "O".

 88 JRN-NEW VALUE "N ".

 88 JRN-PREN VALUE "E".

 88 JRN-PRST VALUE "G".

 88 JRN-STAT VALUE "S".

 88 JRN-TREN VALUE "T".

 88 JRN-USER VALUE "U".

 88 JRN-PREP VALUE "P".

 88 JRN-RDYC VALUE "R".

 88 JRN-RDYA VALUE "S".

 88 JRN-COMM VALUE "X".

 88 JRN-ABRT VALUE "Y".

 88 JRN-HDR VALUE "H".

 15 JRN-UID PICTURE X(8).

 15 JRN-TRID PICTURE X(8).

 15 JRN-LFD

 20 JRN-LFN PICTURE X(8).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 261

 15 JRN-FULL-DATE PICTURE 9(8).

 15 FILLER REDEFINES JRN-FULL-DATE.

 20 JRN-CENTURY PICTURE 99.

 20 JRN-DATE PICTURE 9(6).

 20 FILLER REDEFINES JRN-DATE.

 25 JRN-DATE-YY PICTURE 99.

 25 JRN-DATE-MM PICTURE 99.

 25 JRN-DATE-DD PICTURE 99.

 15 JRN-TIME PICTURE 9(6).

 15 FILLER REDEFINES JRN-TIME.

 20 JRN-TIME-HH PICTURE 99.

 20 JRN-TIME-MM PICTURE 99.

 20 JRN-TIME-SS PICTURE 99.

 15 JRN-TID PICTURE X(8).

 15 JRN-ACCT PICTURE X(4).

 15 JRN-STATE PICTURE X.

 88 JRN-RLBK VALUE "R".

 88 JRN-NORM VALUE " ".

 15 FILLER PICTURE X(2).

 10 JRN-DATA.

 15 FILLER PICTURE X(4092).

 15 FILLER PICTURE X(4092).

/

* 10 JRN-STAT-REC REDEFINES JRN-DATA.

* 15 JRN-STAT-MSG-IN PICTURE 9(8) COMP-4.

* 15 JRN-STAT-MSG-OUT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-LEN-IN PICTURE 9(8) COMP-4.

* 15 JRN-STAT-LEN-OUT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-SWAP PICTURE 9(8) COMP-4.

* 15 JRN-STAT-CAT-REQ PICTURE 9(8) COMP-4.

* 15 JRN-STAT-LOADM-REQ PICTURE 9(8) COMP-4.

* 15 JRN-STAT-LOADM-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-TOT-RESP PICTURE 9(8) COMP-4.

* 15 JRN-STAT-TOT-SCHED PICTURE 9(8) COMP-4.

* 15 JRN-STAT-TOT-COMM PICTURE 9(8) COMP-4.

* 15 JRN-STAT-FILE-SWAP PICTURE 9(8) COMP-4.

* 15 JRN-STAT-CAT-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-MCS-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-DYN-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-ALL-BUSY PICTURE 9(8) COMP-4.

* 15 JRN-STAT-MCS-REQ PICTURE 9(8) COMP-4.

* 15 JRN-STAT-TOT-IO PICTURE 9(8) COMP-4.

* 15 JRN-STAT-TOT-BUSY PICTURE 9(8) COMP-4.

* 15 JRN-STAT-BUSY-10 PICTURE 9(8) COMP-4.

* 15 JRN-STAT-BUSY-15 PICTURE 9(8) COMP-4.

* 15 JRN-STAT-BUSY-20 PICTURE 9(8) COMP-4.

* 15 JRN-STAT-DBMS-IO PICTURE 9(8) COMP-4.

* 15 JRN-STAT-DBMS-IMP PICTURE 9(8) COMP-4.

* 15 JRN-STAT-MAX-B4 PICTURE 9(8) COMP-4.

* 15 JRN-STAT-PRNTR-IO PICTURE 9(8) COMP-4.

* 15 JRN-STAT-BLK-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-JRN-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-B4-ACT PICTURE 9(8) COMP-4.

* 15 JRN-STAT-RESERVED PICTURE 9(8) COMP-4.

* 15 FILLER PICTURE X(3972).

* 15 FILLER PICTURE X(4092).

TIP Programming Reference

262 Proprietary IP-622

/

*

* LOGOFF RECORD:

*

* JRN-LGOF-LGON-HH HOURS LOGGED ON

* JRN-LGOF-LGON-MM MINUTES LOGGED ON

* JRN-LGOF-LGON-SS SECONDS LOGGED ON

* JRN-LGOF-WALL-MSEC TOTAL TIME LOGGED ON (MILLISEC)

* JRN-LGOF-I-O TOTAL NO I/O'S ISSUED

* JRN-LGOF-MSGIN TOTAL INPUT MESSAGES

* JRN-LGOF-MSGOUT TOTAL OUTPUT MESSAGES

* JRN-LGOF-LGON-FULL-DATE DATE OF LOGON (YYYYMMDD)

* JRN-LGOF-LGON-TIME TIME OF LOGON (HHMMSS)

* JRN-LGOF-FULL-DATE DATE OF LOGOFF (YYYYMMDD)

* JRN-LGOF-TIME TIME OF LOGOFF (HHMMSS)

* JRN-LGOF-AVG-RESP AVERAGE RESPONSE TIME (MILLISEC)

*

*

 10 JRN-LGOF-REC REDEFINES JRN-DATA.

 15 FILLER PICTURE X(2).

 15 JRN-LGOF-LGON-HH PICTURE 9(2).

 15 JRN-LGOF-LGON-MM PICTURE 9(2).

 15 JRN-LGOF-LGON-SS PICTURE 9(2).

 15 JRN-LGOF-WALL-MSEC PICTURE 9(8) COMP-4.

 15 JRN-LGOF-I-O PICTURE 9(8) COMP-4.

 15 JRN-LGOF-MSGIN PICTURE 9(8) COMP-4.

 15 JRN-LGOF-MSGOUT PICTURE 9(8) COMP-4.

 15 JRN-LGOF-LGON-FULL-DATE PICTURE 9(8).

 15 FILLER REDEFINES JRN-LGOF-LGON-FULL-DATE.

 20 JRN-LGOF-LGON-CENTURY PICTURE 99.

 20 JRN-LGOF-LGON-DATE PICTURE 9(6).

 20 FILLER REDEFINES JRN-LGOF-LGON-DATE.

 25 JRN-LGOF-LGON-DATE-YY PICTURE 99.

 25 JRN-LGOF-LGON-DATE-MM PICTURE 99.

 25 JRN-LGOF-LGON-DATE-DD PICTURE 99.

 15 JRN-LGOF-LGON-TIME PICTURE 9(6).

 15 FILLER REDEFINES JRN-LGOF-LGON-TIME.

 20 JRN-LGOF-LGON-TIME-HH PICTURE 99.

 20 JRN-LGOF-LGON-TIME-MM PICTURE 99.

 20 JRN-LGOF-LGON-TIME-SS PICTURE 99.

 15 JRN-LGOF-FULL-DATE PICTURE 9(8).

 15 FILLER REDEFINES JRN-LGOF-FULL-DATE.

 20 JRN-LGOF-CENTURY PICTURE 99.

 20 JRN-LGOF-DATE PICTURE 9(6).

 20 FILLER REDEFINES JRN-LGOF-DATE.

 25 JRN-LGOF-DATE-YY PICTURE 99.

 25 JRN-LGOF-DATE-MM PICTURE 99.

 25 JRN-LGOF-DATE-DD PICTURE 99.

 15 JRN-LGOF-TIME PICTURE 9(6).

 15 FILLER REDEFINES JRN-LGOF-TIME.

 20 JRN-LGOF-TIME-HH PICTURE 99.

 20 JRN-LGOF-TIME-MM PICTURE 99.

 20 JRN-LGOF-TIME-SS PICTURE 99.

 15 JRN-LGOF-AVG-RESP PICTURE 9(8) COMP-4.

 15 FILLER PICTURE X(4040).

 15 FILLER PICTURE X(4092).

*

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 263

* LOGON RECORD:

*

* JRN-LGON-FULL-DATE DATE OF LOGON (YYYYMMDD)

* JRN-LGON-TIME TIME OF LOGON (HHMMSS)

*

 10 JRN-LGON-REC REDEFINES JRN-DATA.

 15 FILLER PICTURE X(1).

 15 JRN-LGON-STATUS PICTURE X(1).

 88 JRN-LGON-ERROR VALUE "E".

 88 JRN-LGON-OK VALUE " ".

 15 FILLER PICTURE X(18).

 15 JRN-LGON-FULL-DATE PICTURE 9(8).

 15 FILLER REDEFINES JRN-LGON-FULL-DATE.

 20 JRN-LGON-CENTURY PICTURE 99.

 20 JRN-LGON-DATE PICTURE 9(6).

 20 FILLER REDEFINES JRN-LGON-DATE.

 25 JRN-LGON-DATE-YY PICTURE 99.

 25 JRN-LGON-DATE-MM PICTURE 99.

 25 JRN-LGON-DATE-DD PICTURE 99.

 15 JRN-LGON-TIME PICTURE 9(6).

 15 FILLER REDEFINES JRN-LGON-TIME.

 20 JRN-LGON-TIME-HH PICTURE 99.

 20 JRN-LGON-TIME-MM PICTURE 99.

 20 JRN-LGON-TIME-SS PICTURE 99.

 15 FILLER PICTURE 99.

 15 FILLER PICTURE X(4056).

 15 FILLER PICTURE X(4092).

*

* CKPT RECORD: (FOR LIBRARY ELEMENT READ OR WRITE)

*

* JRN-CKPT-ELT-NAME ELEMENT NAME

* JRN-CKPT-ELT-TYPE ELEMENT TYPE (S-OURCE M-ACRO ETC)

* JRN-CKPT-ACCESS READ / WRITE ACCESS BY USER

*

 10 JRN-CKPT-REC REDEFINES JRN-DATA.

 15 JRN-CKPT-ELT-NAME PICTURE X(8).

 15 JRN-CKPT-ELT-TYPE PICTURE X.

 15 JRN-CKPT-ACCESS PICTURE X.

 88 JRN-CKPT-READ VALUE "R".

 88 JRN-CKPT-WRITE VALUE "W".

 15 FILLER PICTURE X(4082).

 15 FILLER PICTURE X(4092).

*

* JOURNAL RECORD TYPES: AFTR, BEFR, DELT, NEW, USER

* CONTAIN A VARIABLE AMOUNT OF DATA IN JRN-DATA

* -- DEPENDING ON THE RECORD SIZE OF THE

* FILE TO WHICH THE IMAGE APPLIES

*

* JOURNAL RECORD TYPES: CKPT (EXCEPTING LIBRARIES), TREN,

* PRST, PREN

* CONTAIN ---NO--- DATA OTHER THAN THE PREFIX.

*

*

The following is a description of the fields that make up the TC-JRN
copybook:

TIP Programming Reference

264 Proprietary IP-622

JRN-PREFIX
A fixed length prefix that appears on the front of ALL
records in the journal file.

JRN-REC-LEN
Binary fullword containing the length of the journal file
record. This length includes the number of bytes in the
record prefix.

JRN-REC-TYPE
The type of journal file record.

JRN-UID
This journal record was written on behalf of this TIP user.

JRN-TRID
The TIP transaction name that was executing when this
record was written.

JRN-LFD
The applicable file LFD name (applies to file related journal
records).

JRN-FULL-DATE
The date stamp of this record in YYYYMMDD format.

JRN-TIME
The time stamp of this record in HHMMSS format.

JRN-TID
The name of the terminal related to this journal record.

JRN-GTRAN-LOCAP
The name of the LOCAP related to this journal record.

JRN-GTRAN-TRAN-NUM
A transaction number unique for each transaction on a
LOCAP.

JRN-DIRECT-BLK-NO
The relative record number if this journal record is a before
(BEFR) or after (AFTR) image of a direct (non-indexed)
file.

JRN-ACCT
The logon account number of the user to which this journal
record pertains. This field contains the account number
that was specified when the user logged on TIP.

JRN-STATE
This field contains the character string "R" if this journal
record was written by TIP online roll back.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 265

JRN-DATA
A group item indicating the start of the "data" portion of the
journal record.

 Note: The copybook reserves a great deal of space to accommodate a fairly
large record—the record length of the journal record can be large.

Additional considerations:

 The LOGON transaction writes a record to the journal file after four
consecutive failed logon attempts (at the LOGON screen.) The logon
record in the journal file has a status (JRN-LGON-STATUS) that
indicates acceptance or rejection of the logon.

Batch Journal File Access

The TIP library libtip.a contains subroutines that provide I/O services to
journal files for the batch program.

You may write a batch program to use these supplied subroutines to read
the TIP journal file or the QBL file.

TIPJRNOP - Batch Journal File

This subroutine OPENs the input "journal" file. The subroutine OPENs the
first file that it finds from the following list:

 File described by TIPJRNIN environment variable

 Journal file

 QBL file

Syntax:

CALL "TIPJRNOP"

No parameters required.

Additional considerations:

 TIP does not provide an error status.

TIPJRNCL - Batch Journal File Close

This subroutine CLOSEs the input "journal" file. The subroutine CLOSEs
whatever file was previously OPENed via a call to TIPJRNOP (see
previous description).

Your program should not attempt a call to this subroutine unless it has
completed a prior call to TIPJRNOP.

Syntax:

CALL "TIPJRNCL"

TIP Programming Reference

266 Proprietary IP-622

No parameters required.

TIPJRNGT - Batch Journal File Read

This subroutine READs the next record from the input file and moves it to
the area specified as the (only) parameter on the CALL statement. The
file header or control record is meant for system use only and will not be
returned.

Syntax:

CALL "TIPJRNGT" USING JRN-RECORD

Where:

JRN-RECORD
Parameter indicating where the subroutine is to place the
next record from the input file.

 You should use the previously described copybook (TC-
JRN) to define this area.

Additional considerations:

 If the record length (JRN-REC-LEN) is zero after a call to TIPJRNGT,
the program must treat this as an end of file indication.

 The batch journal file access routines return a variable length record.
In particular, there may be very large records in the input file (for
example, BEFR and AFTR images of user data records).

 If your program has no interest in a particular record type, the record
can be ignored when it is delivered by the call to the TIPJRNGT
subroutine; however, the program must allow sufficient space in the
definition of the record area (JRN-RECORD) to house the largest
possible journal record!

 This is the reason for the rather generous FILLER items that are
defined as part of the group item "JRN-DATA" in the supplied
copybook.

FCS Batch Interface

The FCS Batch Interface allows batch programs to access and update
files that are managed by TIP.

Batch programs call TIP to Read, Read for Update, and Write records.
TIP performs these operations, looks after record locking, saves before-
images of records during updates, and journals completed record
updates. The preceding actions depend on how the file is defined to TIP.

The TIP FCS Batch Interface consists of:

 tipbatsv — a batch program

 tipbatpi.o — an interface subroutine found in libbat.a.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 267

Each batch application that wants to access TIP must initially CALL
BATACTIV to start its own copy of tipbatsv. The tipbatsv batch interface
program runs as a separate process.

Your batch application uses tipbatpi.o to pass messages to your
tipbatsv process that in turn communicates with TIP.

Through this interface, batch programs can access most file types
supported by TIP including indexed, direct and sequential.

Prepare to use batch Interface Routine

You must be sure that the correct value for the TIPROOT environment
variable has been set and that $TIPROOT/bin is declared in the PATH
environment variable.

The interface routine needs to know how many parameters have been
passed on a CALL. The method of computing this is different for each
COBOL compiler. The genmain utility will create a small library with the
correct code for your COBOL compiler.

 If you are using MBP COBOL, run genmain -vn.

 If you are running Micro Focus COBOL, run genmain -mn.

This will create a library called libnargs.a. When you compile and link
batch programs (that use this interface) specify these linker options:

-L$TIPROOT/lib -lbat -lnargs .

tipbatpi.o Interface Subroutine

The tipbatpi.o routine has several entry points. The names of the calls to
tipbatpi.o begin with "BAT" (for batch) to avoid confusion with the on-line
"TIP" FCS calls.

BATACTIV

To find out if TIP is active, the batch program can call BATACTIV.

This call establishes the connection with TIP and must be issued before
any other BAT calls.

Example:

05 BATFLG PICTURE X.

 88 SERVER-ACTIVE VALUE “Y”.

 88 SERVER-INACTIVE VALUE “N”.

 CALL “BATACTIV” USING BATFLG

TIP Programming Reference

268 Proprietary IP-622

BATFCS, BATPIB

When you call BATFCS you may pass any valid parameters that TIPFCS
will accept. Use the function codes in the TC-FCS copy book. The status
codes are the same, as well.

Example:

CALL “BATFCS” USING FCS-OPEN

 MYLFN.

CALL “BATFCS” USING FCS-GET

 MYLFN

 MYREC

 MYKEY.

CALL “BATFCS” USING FCS-CLOSE

 MYLFN.

The function codes, logical file name packet, record area and key area
typically are defined in the batch program‘s WORKING-STORAGE
SECTION.

Status codes are returned in the 9th byte of the file name packet. To get
the usual PIB status as well, define a PIB in WORKING-STORAGE with
the TC-PIB copy book. Then inform BATFCS you wish to use the PIB by
calling BATPIB once, early in the program execution.

Example:

01 MYPIB. COPY TC-PIB OF TIP.

 CALL “BATPIB” USING MYPIB

Batch Commit and Rollback

By default, BATFCS commits each record update (ADD, PUT, DELETE)
as it occurs (by calling FCS-TREN).

A logical transaction (such as moving money from one account to
another) may update several records. Taking money out of the first
account without adding it to the second account tends to make customers
very angry. You want to commit both accounts at the same time - or
rollback both of them. Fortunately, your batch applications can do this
with BATCOMIT and BATROLBK.

Your application should call "BATCOMIT" to establish the start of a
"transaction" (update sequence). The initial call to BATCOMIT turns off
the automatic commit behavior of BATFCS. Your application can now
perform record ADD, PUT, and DELETE operations and issue
BATCOMIT or BATROLBK as required. The intended use of this option is
for casual updates of files that TIP is managing. If you have a large

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 269

number of records to process it is recommended that you close the file in
TIP and then run your batch update program without using BATFCS.

BATCOMIT:

Commit record updates since the last commit or rollback and mark the
beginning of a new transaction or rollback point. Once updates have been
committed they cannot be rolled back.

CALL "BATCOMIT"

BATROLBK:

Roll back (reverse) any record updates since the last commit or rollback
and mark the beginning of a new transaction or rollback point.

CALL "BATROLBK"

Additional Considerations:

 The purpose of BATCOMIT is to maintain the integrity of related
records. Your application should call BATCOMIT when a logical unit
of processing has completed.

 Do not try to commit all records for a large file as a single transaction -
the key holding table for TIP could be filled to capacity. The key
holding table is maintained in TIP's Global System shared memory.

 To see how much Global System shared memory is currently being
used by TIP, run "status s". The last status line will be of the form:

Of -M memory: Current free: 172K Most used: 27K

Performance:

Batch programs using the TIP FCS batch interface may execute more
slowly. TIP performs additional I/O to insure the integrity and consistency
of the data. TIP checks every record update request against all other
requests from the on-line system. TIP may also hold before-images
during updating. In addition, increased I/O may occur from journalizing of
updates.

If your batch program updates many records and the file can be closed to
TIP, you may want to continue that practice. If only a few updates are
done and file closing is hard to schedule, the added overhead of the
batch interface may be worth the assurance of data integrity and the ease
of operation.

Journalizing both on-line and batch updates will count as an overall
improvement in system operation. File recovery from a single source and
with a single method is easier and safer.

Security:

When a batch program uses the TIP FCS batch interface, the user id of
the person running the batch program is used to log into TIP. It is best if
the user is properly defined to TIP. All appropriate TIP security and group

TIP Programming Reference

270 Proprietary IP-622

searching is then enforced. If updates are journalized, this information
quickly identifies the source of any file change.

PCXFER - PC File Transfer

TIP provides reentrant subroutines that TIP native mode programs may
call to transfer data to and from a Personal Computer running MS-DOS.
The subroutines are:

 TIPH2P - Copy from HOST to the computer.

 TIPP2H - Copy from computer to the HOST.

These TIP native mode programs that use these routines must be running
either the MS-DOS or MS-Windows based versions of TIP/fe.

The user interface with PCXFER is similar to that used by TIPFCS calls
(that is: function-code, filename, record). However, a fourth parameter is
required that indicates a user supplied work area which PCXFER uses as
a buffer. The filename (2nd parameter) is used to indicate the MS-DOS
filename (source or destination).

PCXFER handles variable length records with no maximum length. A TIP
native mode program issues calls to the computer transfer subroutines to
perform the following functions:

 OPEN Initiate the interface to TIPH2P or TIPP2H.

 GET Retrieve a record image from an MS-DOS file (TIPP2H)

 PUT Pass a single record image to an MS-DOS file (TIPH2P).

 FLUSH Force TIPH2P to empty its internal buffer.

 CLOSE Terminate the interface with TIPH2P or TIPP2H.

File Transfer Interface copybooks

There are copybooks defined which can be used when passing
parameters to the PCXFER functions. They are as follows:

TC-PCFIL (File Packet) copybook

The format of the file packet is defined by the copybook TIP/TC-PCFIL
and should be included in the LINKAGE SECTION of the program.

05 FILE-PKT. COPY TC-PCFIL

 OF TIP.

*

* FILE PACKET FOR HOST/computer TRANSFER

*

 10 PCFIL-DRIVE PICTURE X.

 10 PCFIL-FILE-NAME PICTURE X(8).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 271

 10 PCFIL-EXTENSION PICTURE X(3).

 10 FILLER PICTURE X(4).

 10 PCFIL-STATUS PICTURE X.

 10 PCFIL-ACKNOWLEDGE PICTURE X(4).

The following is a description of the fields that make up the TC-PCFIL
copybook:

PCFIL-DRIVE
Specifies the drive designator on which the MS-DOS file is
to be read or written. Specify a drive letter between "A"
through "Z" (inclusive).

PCFIL-FILE-NAME
The filename of the MS-DOS file to be accessed and must
conform to MS-DOS rules.

PCFIL-EXTENSION
The three character extension name used for this file.

PCFIL-STATUS
A status byte that is set to the same return status value as
PIB-STATUS (except during FCS-OPEN when the FILE-
PKT existence has not been conclusively established).

PCFIL-ACKNOWLEDGE
Not used at this time.

TC-PCINF (Info Packet) copybook

The format of the information packet is defined by the copybook TIP/TC-
PCINF and should be included in the LINKAGE SECTION of the program.
This packet is required only with the call to the FCS-OPEN function.

05 INFO-PKT. COPY TC-PCINF

 OF TIP.

 *

 * COPY ELEMENT FOR MSDOS TRANSFER INFO PACKET

 10 PCINF-BUF-LEN PICTURE 9(4)

 COMP-4 SYNC.

 10 PCINF-ERR-TERM PICTURE X(4).

 10 PCINF-INDEX PICTURE X.

 10 PCINF-OPTIONS PICTURE X(8).

 10 PCINF-SEPARATOR PICTURE X(2).

 10 PCINF-END-OF-FILE.

 15 PCINF-PROMPT PICTURE X(2).

 15 PCINF-MAX-REC-LEN PICTURE 9(4).

 15 FILLER PICTURE X(10).

 10 PCINF-CONTROL-CODE PICTURE X.

 88 PCINF-SPACE-SUPR VALUE " ".

 88 PCINF-NO-SUPR VALUE "N".

 88 PCINF-HEX-WITH-SS VALUE "B".

TIP Programming Reference

272 Proprietary IP-622

 88 PCINF-HEX-WOUT-SS VALUE "H".

 88 PCINF-TRANSLATE VALUE "T".

 10 FILLER PICTURE X(10).

 10 PCINF-COMMENTS PICTURE X(60).

 10 PCINF-COMPRESS PICTURE X.

 10 PCINF-RESERVED PICTURE X(23).

The following is a description of the fields that make up the TC-PCINF
copybook:

PCINF-BUF-LEN
Specifies the length of a buffering area in the user program
into which the FCS-OPEN function blocks record images
into screen images for efficient data communication
transfer.

 This is a numerical value, which is the length of the
buffering area. Set this field before issuing the FCS-OPEN
function. The minimum buffer size is 768 bytes; the
recommended buffer size is 2560. In general, the larger
the buffer, the greater the efficiency of the transfer
subroutines.

PCINF-ERR-TERM
Not used at this time.

PCINF-INDEX
Not used at this time.

PCINF-OPTIONS
Not used at this time.

PCINF-SEPARATOR
Not used at this time.

PCINF-END-OF-FILE
Not used at this time.

PCINF-PROMPT
Not used at this time.

PCINF-MAX-REC-LEN
This field is only used on transfers from an MS-DOS file to
the host. This field should contain the length of the largest
record expected from the MS-DOS file.

PCINF-CONTROL-CODE
This character determines the type of transfer to take
place.

 The following values are recognized:

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 273

space Used when transferring purely graphic character
data. In this mode of operation, spaces at the end
of a line are suppressed.

N Used when transferring purely graphic character
data. In this mode of operation, NO trailing space
suppression is to take place.

ALL other values, including 'B', 'H' and 'T', result in the data
being transferred in binary mode (the exact data is
transferred between TIP and MS-DOS).

PCINF-COMMENTS
Not used at this time.

PCINF-COMPRESS
Not used at this time.

PCINF-RESERVED
This field is reserved for future use.

TC-PCBUF (Transfer Buffer Packet) copybook

The format of the transfer buffer packet is defined by the copybook
TIP/TC-PCBUF and should be included in the LINKAGE SECTION of the
program.

COPY TC-PCBUF OF TIP.

*

* COPY ELEMENT FOR MSDOS TRANSFER BUFFER PACKET

* USER PROGRAM SHOULD NOT MODIFY THESE FIELDS

 10 PCBUF-AREA.

 15 PCBUF-LENGTH PICTURE 9(8)

 COMP-4 SYNC.

 15 FILLER PICTURE X(2556).

The following is a description of the fields that make up the TC-PCBUF
copybook:

PCBUF-LENGTH
While the transfer interface is open, this field contains the
length of the buffer. This field is for informational purposes
only and must not be modified by the user program.

Record Area Packet copybook

The format of the record area packet is defined by the copybook TIP/TC-
PCREC and should be included in the LINKAGE SECTION of the
program.

The record packet is a variable length record containing a length and the
data transferred to and from the MS-DOS file. The program MUST define
the appropriate record fields immediately after PCREC-DATA. Multiple
record types are handled by redefinition.

05 RECORD-PKT. COPY TC-PCREC

TIP Programming Reference

274 Proprietary IP-622

 OF TIP.

*

* COPY ELEMENT FOR MSDOS TRANSFER RECORD PACKET

 10 PCREC-LENGTH PICTURE 9(4)

 COMP-4 SYNC.

 10 PCREC-CONTROL PICTURE X.

 10 FILLER PICTURE X.

 10 PCREC-DATA.

*

* USER SUPPLIED RECORD LAYOUT FOLLOWS HERE

The following is a description of the fields that make up the TC-PCREC
copybook:

PCREC-LENGTH
The length of the entire record packet.

 For FCS-GET:
There is no maximum record length if you set the PCINF-
OPTION field to spaces. This field must be explicitly set
before each call to FCS-GET. The length specified must
include the 4 bytes preceding the actual data. After a call
to FCS-GET this field is set by the PCXFER interface to
the actual record length (including four byte header)
returned from the MS-DOS file.

 For FCS-PUT:
The actual length of the PUT (e.g., minus trailing spaces)
is returned. This field should be specified explicitly before
each call to FCS-PUT.

 The length specified must include the four bytes preceding
the actual data. For example, if the record length was 256
bytes long, move 260 to PCREC-LENGTH. There is no
maximum record length if you set the PCINF-OPTION field
to spaces.

PCREC-CONTROL
If set to "M", to indicate record masking, the record is
ignored since record masking is not required.

PCREC-DATA
This field contains the data of the record to be transferred.

PCXFER Masking

File transfer between TIP and MS-DOS does not require any masking
functionality. This functionality previously was needed to handle EBCDIC
or Binary data, but is not needed since data on both TIP and MS-DOS is
in ASCII format and is transferred in binary image. Any masking
functionality supported on TIP/30 will still be maintained but it is ignored.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 275

Transfer from/to MS-DOS File

File transfer is in either graphical text mode or in binary image mode. In
graphical text mode, set PCINF-CONTROL-CODE to either a space or ‗N‘
depending on whether trailing space suppression is required or not. Then,
each record will be returned from the MS-DOS file as indicated by line
feed separators or will be written to the MS-DOS file with a line feed
separator appended to the record.

ALL other values for PCINF-CONTROL-CODE will transfer the file in
binary image mode with no concern for line feed separators. The data will
be returned exactly as it is in the MS-DOS file or will be written exactly as
in the record being written to the MS-DOS file.

PCXFER Compression

Data compression is handled internally by the PCXFER routines. Any
previous support for compression for TIP/30 is maintained but ignored.
The computer-COMP routine on MS-DOS is not required for file transfer
between TIP and MS-DOS.

FCS-OPEN - Open PCXFER Interface

Establish the interface to the file transfer subroutines by issuing a call to
the specific subroutine with a function code of "FCS-OPEN". This call
serves to initialize the transfer facility. It is used to establish the desired
MS-DOS file destination or source and to specify transfer options that are
required.

A header record may be written to the MS-DOS file during the open. (See
PCINF-COMMENT field for further details).

Syntax:

CALL "TIPH2P" USING FCS-OPEN

 file-pkt

 info-pkt

 pc-buffer

CALL "TIPP2H" USING FCS-OPEN

 file-pkt

 info-pkt

 pc-buffer

Where:

FCS-OPEN
This function code (normally defined via the supplied

TIP Programming Reference

276 Proprietary IP-622

copybook TIP/TC-FCS) indicates that the desired function
is to OPEN the interface.

file-pkt
Use this filename packet to specify the MS-DOS file and
drive that TIPH2P or TIPP2H is to use. When transferring
records to the computer, if the filename and extension
match an existing file, the data in that file is overwritten.
The program does not receive any notification if this occurs
and the file is allocated if it does not already exist.

 See the description of the copybook TIP/TC-PCFIL for
further information.

info-pkt
Information packet required only on the call to TIPH2P or
TIPP2H with the FCS-OPEN function.

 ee the description of the copybook TIP/TC-PCINF for
further information.

pc-buffer
The fourth parameter on the call with a FCS-OPEN
function code identifies the buffer that the user program
provides for PCXFER subroutines to use. This buffer must
be a minimum of 768 bytes and may be as large as 2560
bytes. This area must be fullword aligned. The program
need not initialize this buffer.

 he program should not modify any field in this buffer from
the time an FCS-OPEN function is issued to the time an
FCS-CLOSE function is issued.

 ee the description of the copybook TIP/TC-PCBUF for
further information.

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION

An IO Error has occurred opening the
MS-DOS file or one of the parameters
is invalid. (not one of: FCS-OPEN,
FCS-PUT, FCS-FLUSH or FCS-
CLOSE)

PIB-BREAK
Buffer not initialized, not opened or
error retrieving first buffer of data from
the computer.

PIB-IO-ERROR Invalid parameter list.

PIB-NO-MEM
Buffer length too small (less than 1024
bytes).

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 277

PIB-STATUS Meaning

PIB-NOT-FOUND Destination or error terminal not found.

PIB-WRONG-MODE
Invalid screen number (only 1 through 8
is valid), or non-graphic data found in
the field PCINF-COMMENTS.

PIB-EOF The DOS file does not exist.

Additional considerations:

 Once a successful FCS-OPEN function is performed, the program
should not terminate without issuing an FCS-CLOSE function for the
PCXFER interface. Failing to properly close the interface can leave
buffered data that has not been written to the output file.

 Note: After this function is called, the output to the screen may interfere with the
operation of following calls to FCS-GET. Therefore you should avoid any
output to the screen between FCS-OPEN and FCS-CLOSE of TIPP2H.

FCS-GET - Input Record from computer

Call the TIPP2H subroutine repeatedly when you need to input records.
The format of the record that is passed is described below. The program
issues the FCS-GET function and receives the data from the MS-DOS file
in the designated RECORD-PKT area.

Syntax:

CALL "TIPP2H" USING FCS-GET

 file-pkt

 record-pkt

 buffer

Where:

FCS-GET
This function code, as defined by the supplied copybook
TIP/TC-FCS, indicates that you wish to retrieve a record
from the interface.

file-pkt
File name packet that specifies the drive and MS-DOS file
that TIPP2H is to use.

 See the description of the copybook TIP/TC-PCFIL for
further information.

record-pkt
This is the record area into which FCS-GET returns the
MS-DOS data.

TIP Programming Reference

278 Proprietary IP-622

 See the description of the copybook TIP/TC-PCREC for
further information.

buffer
The buffer that is assigned for use by TIPP2H as given on
the FCS-OPEN function call.

 See the description of the copybook TIP/TC-PCBUF for
further information

Error Conditions:

PIB-STATUS Meaning

PIB-EOF This status is returned at end of file.

PIB-NO-MEM

This status is returned if the record length is
longer than the buffer provided. This applies
only if the default options for PCINF-OPTIONS
are not used.

PIB-BREAK
This status is returned if an error has been
detected at the computer

FCS-PUT - Output Record to computer

The TIPH2P subroutine is called to output each record. The format of the
record that is passed is described below. The program issues the FCS-
PUT function to deliver the record to the MS-DOS file from the RECORD-
PKT.

The programmer must keep in mind that TIPH2P is blocking the records
into the transfer buffer to build a screen full of data. This means that the
line that is passed with a FCS-PUT function to TIPH2P may not be
physically transferred at the time the call is issued! Also see the
description of the FCS-FLUSH function of TIPH2P.

Syntax:

CALL "TIPH2P" USING FCS-PUT

 file-pkt

 record-pkt

 buffer

Where:

FCS-PUT
This function code, as defined by the supplied copybook
TIP/TC-FCS, indicates that the desired function is to output
a record to the MS-DOS.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 279

file-pkt
Use this file name packet to specify the drive and MS-DOS
file that TIPH2P is to use. See the description of the
copybook TIP/TC-PCFIL for further information.

record-pkt
This is the record packet that contains the data to be
transferred. See the description of the copybook TIP/TC-
PCREC for further information.

buffer
The buffer that is assigned for use by TIPH2P as given on
the FCS-OPEN function call. See the description of the
copybook TIP/TC-PCBUF for further information.

Error Conditions:

PIB-STATUS Meaning

PIB-NO-MEM
This status is returned if the record
length is longer than the buffer provided.

PIB-WRONG-MODE

This status is returned if non-displayable
characters are detected in the record
data. If this status appears when not
expected, double check the parameter
list supplied on the call; the TIPH2P
subroutine may not be examining the
same data area that you think is being
examined!

PIB-BREAK
This status is returned if an error has
been detected at the computer.

FCS-FLUSH - Flush PCXFER Buffer

Since TIPH2P is buffering the records that the user program is passing,
the program may need to flush the content of the TIPH2P buffer
prematurely. Normally you need not consider issuing the FCS-FLUSH
operation, an automatic flush occurs when the buffer fills and when a
close is issued.

Syntax:

CALL "TIPH2P" USING FCS-FLUSH

 file-pkt

 dummy

 buffer

TIP Programming Reference

280 Proprietary IP-622

Where:

FCS-FLUSH
This function code, defined by the supplied copybook
TIP/TC-FCS, indicates that the desired function is to flush
the TIPH2P buffer.

file-pkt
This file name packet specifies the drive and MS-DOS file
that TIPH2P is to use.

 See the description of the copybook TIP/TC-PCFIL for
further information.

dummy
The third parameter is a dummy parameter (the usual
record packet could be used) that is present only to
preserve symmetry with the other calls to TIPH2P. Record
data cannot be provided with a call to the FCS-FLUSH
function - it is ignored.

buffer
The buffer that is assigned for use by TIPH2P as given on
the FCS-OPEN function call.

 See the description of the copybook TIP/TC-PCBUF for
further information.

Error Conditions:

PIB-STATUS Meaning

PIB-LOCKED

This status is returned if the buffer is about to be
flushed, serial resources are locked (file in
sequential mode) and this PUT was rejected.
The CALL should be re-submitted when the file
is taken out of sequential mode.

Additional considerations:

 The FLUSH operation delivers any buffered record data that is in the
TIPH2P buffer. This normally only occurs when the buffer is full. Since
flushing defeats blocking and increases communication overhead,
perform this operation only when your program must be certain that
terminal I/O occurs at a specific time (for example, when your
program is awaiting further input to a background process).

FCS-CLOSE - Close PCXFER Interface

When your program has finished transferring records, the program must
close the interface to PCXFER. The FCS-CLOSE function automatically

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 281

flushes any buffered data (see description of the FCS-FLUSH function in
the previous section).

If the program does not issue an FCS-CLOSE function to TIPH2P or
TIPP2H, unpredictable results may occur; one real possibility is the
potential loss of the last buffer of data.

Syntax:

CALL "TIPH2P" USING FCS-CLOSE

 file-pkt

 dummy

 buffer

CALL "TIPP2H" USING FCS-CLOSE

 file-pkt

 dummy

 buffer

Where:

FCS-CLOSE
This function code, as defined by the supplied copybook
TIP/TC-FCS, indicates that the desired function is to close
the PCXFER subroutine interface

file-pkt
File name packet that specifies the drive and MS-DOS file
that TIPH2P and TIPP2H are to use.

 See the description of the copybook TIP/TC-PCFIL for
further information

dummy
The third parameter is a dummy parameter (the usual line
packet could be used) that is present only to preserve
symmetry with the other calls. Record data cannot be
supplied with a call to the FCS-CLOSE function - it is
ignored.

buffer
The buffer that is assigned for the subroutines use as
described in the previous section.

 See the description of the copybook TIP/TC-PCBUF for
further information.

Error Conditions:

PIB-STATUS Meaning

PIB-EOF
For TIPH2P, this status is returned if an I/O error
is detected on an implied FLUSH or an EOF
string was not detected. For TIPP2H, this status

TIP Programming Reference

282 Proprietary IP-622

PIB-STATUS Meaning

is returned if an I/O error is detected while
attempting to close the PCXFER interface.

Additional considerations:

 The CLOSE operation delivers any buffered data that is in the transfer
buffer. There is no need to flush the buffer explicitly before issuing the
close function.

 Once the CLOSE operation closes the interface, the program may
reopen the interface and start another transfer.

 The CLOSE operation also guarantees that the computer
software/hardware is notified that the file transfer operation is
complete - this can prevent subsequent file transfer attempts from
having problems.

Compiling and Testing Application Programs

Supported COBOL Compilers

Inglenet has verified two COBOL compilers for use with TIP/ix on
UNIX/Linux:

 Micro Focus COBOL Server Express

 OpenCOBOL 1.1 (open source)

 COBOL-IT Enterprise Edition (supported and updated version of
OpenCOBOL)

Some platforms do not support both COBOL compilers. Check the TIP/ix
Release Notice to see which compilers are supported on your platform.

TIP/ix supplies makefiles (in $TIPROOT/src/tip) for these compilers.
Inglenet recommends that you use these files as examples to construct
your own make files.

Most UNIX systems provide a make utility and a C compiler.

Micro Focus COBOL

The Micro Focus COBOL compiler provides a high degree of compatibility
with the OS/3 COBOL-74 and COBOL-85 compilers.

The Micro Focus COBOL compiler needs the following environment
variables at compile time:

COBCPY=$TIPROOT/include;dir2;dir3...

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 283

4. Specify the directories holding copybooks. This should include
$TIPROOT/include.

On some platforms, the following environment variables are required at
run time:

COBDIR=directory

5. Specify the directory where the compiler is installed. Usually:

"/usr/lib/cobol".

Note: If you use Micro Focus COBOL in a dynamic linking
environment and:re-entrant programs, or background
transactions, or distributed transaction processing (DTP)
transactions, or IMS programs with REUSE option then the
tipix.conf file must contain an COBDIR entry.

LD_LIBRARY_PATH=$COBDIR/coblib

6. If you want to use re-entrant programs, you must code this
environment variable in the tipix.conf file to specify the location of
the Cobol libraries.

LD_RUN_PATH=$COBDIR/coblib

7. Specify the run path if it is required on your platform.

For details, see your Unix and Micro Focus documentation. For a
combined list of TIP, HSP/80, HSP/22, and other related environment
variables, browse the file:

$TIPROOT/arm/scripts/arm.tipsetenv.

Types of Executables

Micro Focus COBOL can generate two kinds of executable programs:

 statically linked executables

 dynamically linked executables

For the statically linked type, the executable contains everything it needs
to run.

For the dynamically linked type, the executable depends on a shared run-
time object library supplied by Micro Focus. When you execute a
program, Unix loads the program into your session‘s memory (address
space), and attempts to resolve references to subroutines stored in any
shared object libraries. If all the references are resolved, the program is
given permission to run. Otherwise, the program is aborted.

The advantage of dynamic linking is that you get smaller executables.

TIP Programming Reference

284 Proprietary IP-622

The disadvantages of dynamic linking are that some of the newer security
features of TIP are sacrificed, and that executables take longer to load
into memory.

TIP release 1.7 and higher may be installed as either a secured or
unsecured OLTP system. For details, see fixperms in the TIP Utilities
manual.

Some of the security functions in TIP are implemented with a Unix feature
called "setuid".

Essentially, certain special executables are owned by a designated
privileged Unix user, and when these programs are executed on behalf of
an unprivileged user, some restricted access is granted (temporarily) to
the otherwise unprivileged user.

However, Unix refuses to run "setuid" executables which dynamically link
in a shared object library at run-time. This is a necessary measure to bar
any Trojan Horse (in the form of a malicious shared object library module)
from infiltrating the Unix system.

COBOL Makefiles

The following makefiles show how to compile on-line or batch COBOL
programs (with or without debugging).

The makefiles presume the following meanings for file name extensions:

Extension TIP COBOL transaction

cbl TIP COBOL transaction

ims IMS COBOL transaction

bat Batch COBOL program

rpg
RPG program (RPG source code is converted to
COBOL and then compiled). This option requires
the Heritage Support Package (HSP).

tip COBOL program that calls 1100/2200 APIs.

The makefiles, distributed with TIP in the directory $TIPROOT/src/tip, are
only examples. They contain comments to guide you when editing them
to meet your needs. The Unix make program is a complex utility with
many features. If you intend to use it, study your Unix documentation
thoroughly. See your COBOL compiler documentation for compiler-
specific information beyond the scope of this book.

There are two main make files (make.mf for Micro Focus and make.oc
for OpenCOBOL and COBOL-IT). When the Unix make utility is invoked,
it looks for a file called makefile. When TIP is installed, it creates a Unix

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 285

file link that points the file makefile to either make.oc or make.mf
depending on which COBOL compiler is installed.

To use these make files, copy them to the directory that contains your
source programs and invoke the make utility with the appropriate
makefile:

make [-f xxxxx.xxx] target

Where:

-f This option tell the make utility to use a specific makefile.
Normally this option is not required, which results in the file
makefile being used. When TIP is installed this file will be
linked to either make.mbp or make.mf.

xxxxx.xxx
The makefile to use (make.mf or make.mbp).

target
The name (without extension) of the target executable to
"make". The make program infers the name of the source
components needed to create the target.

Example:

If your source program is called PAY020.cob you can invoke the Micro
Focus makefile with this command:

make -f make.mf PAY020

If the file makefile is linked to make.mf, then the program PAY020 can
be compiled with the following statement.

make PAY020

The distributed makefiles put the executable in the location defined by the
BIN symbol. You may have to fine tune (edit) the value of BIN in the
makefiles.

NOTE: These sample makefiles are provided as working examples and
you may need to make changes for your local setup and conventions.

Micro Focus COBOL Makefile (make.mf)

Makefile for compiling TIP application programs using MF COBOL.

This 'makefile' is provided as an example. Please edit it

to suit your local situation.

Unless you are using multiple COBOL compilers and need to easily

switch between them, it is more convenient to rename this file to

Makefile or makefile. (i.e. cp make.mf Makefile).

If you are using MF COBOL, the install script has linked makefile

to make.mf. This lets you execute a make command without having

to specify the make file.

Uncomment the following definition if you want to use multiple COBOL

TIP Programming Reference

286 Proprietary IP-622

compilers, or have not renamed this file to be either makefile or

Makefile,

or have removed the link of makefile to make.mf.

MAKEFILE= -f make.mf

TIP COBOL transactions should be suffixed with .cbl or .cob

TIP C transactions should be suffixed with .c

IMS/90 COBOL transactions should be suffixed with .ims

Batch COBOL programs should be suffixed with .bat

RPG programs should be suffixed with .rpg

.SUFFIXES: .c .ims .cbl .cob .bat .rpg .tip

Set up some macros to make any future changes easier.

TIPINC = $(TIPROOT)/include

TIPLPATH= -L$(TIPROOT)/lib

LIBBAT = -lbat

LIBIMS = -lims

LIBTIP = -ltip

TIPISAM = -ldisam

By default, any binaries created will be moved into $TIPROOT/bin.

If you want to put your binaries into a different directory then change

the following definition of BIN.

BIN = $(TIPROOT)/bin

If you choose to put copybooks in a directory other than

$TIPROOT/include then set SITEINC to that directory. You may

enter multiple directories but be sure to follow the format

of the template supplied.

Note: when entering the directory name remove the "<>" characters.

For an example, see the definition of TIPINC above.

Be sure to add "$(SITEINC)" to the rules that compile your COBOL

programs.

SITEINC =:<enter your include directory here>

If you choose to put create object libraries in a directory other than

$TIPROOT/lib then set SITELIB to that directory.

Note: when entering the directory name remove the "<>" characters.

For an example, see the definition of TIPLPATH above.

#SITELPATH = -L<enter your library directory here>

LIBPATH = $(TIPLPATH) $(SITELPATH)

COBOL = cob

By default this make file compiles programs without including any

debugging information. With out this information source level debugging

will not work. If you want to have debugging on by default then

uncomment

the MFOPT definition that contains the debug option.

In addition, debugging can be invoked on a per compile basis by issuing

the following command:

make MFOPT=-gUa <program>

where <program> is the name of your source file without the extension.

MFOPT may be used to set any Micro Focus COBOL parameters that you

would

like to use. A number of examples follow.

Generic debugging compile options

#MFOPT = -gUa

Online compile options for debugging with animation

#MFOPT = -gUa -I TIPFCS -I TIPMSGO -I TIPMSG -I TIPH2P -I TIPSUB

Batch compile options for debugging with animation

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 287

#MFOPT = -gUa -I BATFCS -I INITFTAB

Default compile options for no debugging.

MFOPT = -Ox

MFCOB = -P -X mFFH -X ADIS -C "NOWARNING VSC2 IBMCOMP REF XREF"

MFBAT = -C "NOWARNING VSC2 IBMCOMP REF XREF NODETECTLOCK"

FILESHARE should prevent opening a file for exclusive use

#MFBAT = -C "NOWARNING VSC2 IBMCOMP REF XREF NODETECTLOCK FILESHARE"

If compiling on a Data General DG/UX system set the environment

variable TARGET_BINARY_INTERFACE to m88kdguxcoff

#TARGET_BINARY_INTERFACE="m88kdguxcoff"

MV = mv -f

RM = rm -f

CC = cc

CLIB = -lcurses -lc

GENMAIN = $(TIPROOT)/bin/genmain

ARMRPG = $(TIPROOT)/bin/armrpg

ARMOPT = -mf

Following is for TIP transactions using Micro Focus COBOL

.cob .cbl:

$(COBOL) $(MFCOB) $(MFOPT) -c -k $<

$(GENMAIN) -tm $* main$*.c

$(COBOL) $(MFCOB) $(MFOPT) main$*.c $*.o -o $* $(LIBPATH) $(LIBTIP)

$(CLIB)

$(MV) $* $(BIN)

$(RM) $*.idy $*.int $*.lst $*.o main$*.o main$*.c

Following is for IMS transactions using Micro Focus COBOL

.ims:

$(COBOL) $(MFCOB) $(MFOPT) -c -k $<

$(GENMAIN) -im $* main$*.c

$(COBOL) $(MFCOB) $(MFOPT) main$*.c $*.o -o $* $(LIBPATH) $(LIBIMS)

$(CLIB)

$(MV) $* $(BIN)

$(RM) $*.idy $*.int $*.lst $*.o main$*.o main$*.c

Following is for 1100 transactions using Micro Focus COBOL

.tip:

$(COBOL) $(MFCOB) $(MFOPT) -c -k $<

$(GENMAIN) -1m $* main$*.c

$(COBOL) $(MFCOB) $(MFOPT) main$*.c $*.o -o $* $(LIBPATH) $(LIBS2200)

$(CLIB)

$(MV) $* $(BIN)

$(RM) $*.idy $*.int $*.lst $*.o main$*.o main$*.c

Following is for batch Cobol programs

.bat:

$(COBOL) $(MFBAT) $(MFOPT) -c -k $<

$(COBOL) $(MFBAT) $(MFOPT) $*.o -o $* $(LIBPATH) $(LIBBAT) $(CLIB)

$(MV) $* $(BIN)

$(RM) $*.o

Following is for RPG to COBOL

.rpg:

$(ARMRPG) $(ARMOPT) $(@F).rpg

make $(MAKEFILE) $(@F)

Following is for TIP transactions written in C language

.c:

$(GENMAIN) -cm $* main$*.c

$(CC) $(CFLAGS) main$*.c $< -o $* $(LIBPATH) $(LIBTIP) $(CLIB)

$(MV) $* $(BIN)

$(RM) $*.o main$*.o main$*.c

Debugging on-line programs

Finding out why your program isn‘t performing can be difficult. TIP
supports a number of tools and techniques to help software developers'
track down elusive bugs. These tools fall into three categories:

TIP Programming Reference

288 Proprietary IP-622

 Debug logs

 Embedded debugging statements

 Compiler-supplied source level debugging

TIP provides a facility that will create log files containing information (in
ASCII) about the execution of an on-line program, or suite of on-line
programs. Since on-line programs execute under control of the TIP
system and make many requests into TIP (with COBOL CALL
statements), the log contains information related to each of these CALLs.
The log files do not normally contain any information about what your
program is doing between CALLs to TIP. If the standard log files are not
sufficient to track down a problem, then you may want to look at the
additional facilities outlined in the following sections.

Activating the log file

The TIP debug log can be created several ways:

tipix -[a]d

 A lowercase "d" means create a separate log file for each
transaction program that is executed.

 The log files are called "log.TRID" where TRID is the
transaction code used to schedule each program.

 The "-a" option specifies that the log is to contain "all"
information. This results in a more detailed log file

 For details about tipix command options, see the TIP
Utilities.

tipix -[a]D filespec

 A capital "D" means create a single log file called "filespec"
containing all the debug log information for the entire user
session (from entering tipix through to the fin command).

 The "-a" option indicates that the log is to contain "all"
information. This results is a more detailed log file. The
filespec value can either be a filename (in which case the
file is created in the user's home directory), or a full path
name specifying the log file to create.

*TRID

 Entering an asterisk (*) character immediately preceding
the transaction code activates the debug log for the
execution of this transaction only.

SMPROG

 When you define a transaction to TIP/ix with the SMPROG
utility, you can set the logging attribute to "Min or All" to
create a debug log every time the on-line program is
scheduled. This is useful when you are debugging a
program that is either called by another program (such as

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 289

TIPSUB, TIPXCTL, TIPFORK etc.) or is started
automatically by the TIP system (by a TIPQUEUE server
program).

Examples:

 This example starts the TIP shell with transaction logging turned on. A
detailed log (because of the ―a‖ option) will be created for every
transaction that is run.

tipix -da

 This example starts the TIP shell with session logging turned on. A
summary log (because no -a option was specified) will be created. All
of the log information will be written to a single file called log.session.
Since no path information is given, the log file will be created in the
user‘s home directory.

tipix -D log.session

 This example assumes that the TIP shell is already active. It runs the
transaction quereq with logging turned on. The log file, log.QUEREQ,
is stored in the user‘s home directory. By default, the log is a
summary log unless you started the TIP shell with the ―-a‖ option.

quereq mainque,12,monday

 This example starts the TIP shell with logging turned off. However, the
―-a‖ option indicates that if any log files are created later, they will be
created as ―all‖ style logs (meaning that they will contain more
detailed information than a summary log does). These log files may
be created using the *trid feature or may be created directly by user
programs using the TIPLOG FCS-OPEN function.

tipix -a

Embedded Debugging Statements

Sometimes a programmer may want to add application-oriented
information to the TIP log file to track down a problem that cannot be
uncovered using the standard log information. TIP provides the TIPLOG,
TIPDUMP and TIPSNAP functions to help track down these problems.

TIPLOG - Updating the Log File

TIPLOG gives you the ability to add extra information to the log file to help
you track down an application error. TIPLOG can write a single line of
textual information to the log, or dump an area of memory to the log in
hexadecimal format.

Besides writing information to the log file, TIPLOG can also open and
close the log file. This can be useful if an abnormal condition occurs and
the application program wants to write information to a log file — even if a
log file was not requested. In such cases, the program would open the log
file, write the appropriate information to the log, and then close the log. If

TIP Programming Reference

290 Proprietary IP-622

an application does create a log file dynamically like this, it should inform
the end user of the event. An error message such as the following might
be appropriate:

Severe error occurred - trace information written to log file

Open the Log File

This function opens a debugging log file in the user‘s home directory. The
file is called ―log.XXXXXXXX‖ (where XXXXXXXX is the transaction code
of the program)

Syntax:

CALL “TIPLOG” USING FCS-OPEN

Where:

FCS-OPEN
Function code from the TC-FCS copy book

Additional Considerations:

 This call will be ignored if the program is defined with the ―Log Never‖
option in SMPROG.

 This function does not return an error if the debug log is already open.

 If this function opens a new log file, it does not check to see if the new
log file will overwrite an existing log file of the same name.

Close the Log File

This function closes the currently open log file.

Syntax:

CALL “TIPLOG” USING FCS-CLOSE

Where:

FCS-CLOSE
Function code from the TC-FCS copybook

Additional Considerations:

 This function does not return an error if the debug log is not currently
open.

 If the TIP shell was started with the ―-D filespec‖ option (specifying a
single log file for the entire session) then this function is ignored and
the log file is not closed.

 If the program closes the current log file, then subsequently re-opens
the log, the previous log file is overwritten.

Write a Text Message to the Log File

This function writes a single text message to the currently open log file.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 291

Syntax:

05 RECORD PICTURE X(80).

CALL “TIPLOG” USING FCS-PUT

 RECORD

Where:

FCS-PUT
Function code from the TC-FCS copy book

RECORD
This is an 80-character record area that contains the
character data to be written to the log file.

Example:

05 TEXT-MESSAGE.

 10 LOG-LITERAL-1 PICTURE X(30) VALUE

 "CREDIT BALANCE IN ERROR, CUST=".

 10 LOG-CUST-NUMBER PICTURE 9(8).

 10 LOG-LITERAL-2 PICTURE X(10)

 VALUE ", BALANCE=".

 10 LOG-CUST-BALANCE PICTURE

 $ZZ,ZZZ.99CR.

 10 LOG-LITERAL-3 PICTURE X(20)

 VALUE ".".

 MOVE REC-CUST-NUMBER TO LOG-CUST-NUMBER

 MOVE REC-CUST-BALANCE TO LOG-CUST-BALANCE

 CALL “TIPLOG” USING FCS-PUT

 TEXT-MESSAGE

Additional Considerations:

 This call is ignored if the program was defined with the ―Log Never‖
option in SMPROG.

 This function does not return an error if the debug log is not open.
Since no error is returned if the log file is not open, programmers may
be tempted to leave these statements in programs even after they
have been debugged. This is a matter of common sense and the
approach taken may differ from case to case. The following points are
items to consider when addressing this issue.

 Although the overhead associated with the TIPLOG function call is
low, especially when the log file is not open, there is still some
overhead. This means that code that is executed many times (such as
the inner loop of a nested loop structure) should not contain TIPLOG
CALLs if they are not actually used to log information.

 The TIPLOG function can provide useful debugging information. It is
very handy to simply have the program run with the log option turned
on and obtain useful information to track down a problem. If the
TIPLOG statements are left in a production program, then they will be
activated any time the program is run with an active log file.

TIP Programming Reference

292 Proprietary IP-622

Dump Memory to the Log File

This function dumps a section of memory in hexadecimal format to the
currently open log file.

Syntax:

CALL “TIPLOG” USING FCS-FLUSH

 Start-1 End-1

 [Start-2 End-2]

 [Start-3 End-3]

 [Start-4 End-4]

Where:

FCS-FLUSH
 Function code from the TC-FCS copybook

Start-n and End-n
identify the starting and ending locations of an area to be
dumped in hexadecimal format to the log file. The dumped
area includes the first byte of the Start-n field up to but not
including the first byte of the End-n field.

 Up to four pairs of parameters may be passed; each pair
represents the starting and ending location of an area of
memory that is to be dumped.

Example:

05 TAX-TABLE.

 10 TAX-ENTRY PICTURE 9(7)V99

 OCCURS 50 TIMES

05 TAX-TABLE-END PICTURE XX

 VALUE "ZZ".

 CALL “TIPLOG” USING FCS-FLUSH

 TAX-TABLE

 TAX-TABLE-END

Additional Considerations:

 The considerations outlined above for the FCS-PUT function also
apply to this function.

 Start-1 and End-1 are mandatory parameters. Start-2 through End 4
are optional. However, if they are specified, they must be supplied in
pairs.

 If the area being dumped is larger than 48 bytes in length and
contains all character (displayable) data, then it is dumped in
character format to conserve space in the log file. If the area being
dumped is either less than 49 characters in length or contains any
non-displayable data, then it is dumped in hexadecimal format.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 293

TIPDUMP - Force Program Dump

This TIP function is used to force a program dump at a specific point in
the processing. Execution of the program is halted and a memory dump is
taken to the log file. After the memory dump is taken, control will return to
the previous program on the execution stack. This is similar to a TIPRTN
function. However, with the TIPDUMP function, the previous program will
receive an error status in its PIB (PIB-PROG-ABEND). The TIPDUMP
function indicates abnormal termination of the transaction and will cause
rollback of any updates performed by the transaction up to this point.

Syntax:

CALL "TIPDUMP"

There are no parameters.

All LINKAGE-SECTION areas, PIB, CDA, MCS and WORK are printed in
Hexadecimal and the program terminates.

The dump is contained in the user‘s home directory in the file
log.XXXXXXXX where XXXXXXXX is the transaction name.

Additional Considerations

 The TIPDUMP function will not create any information in the log file if
the program is defined with the ―Log Never‖ option in SMPROG.

 This call writes the information to the currently opened log file. If no
log file is open, one will be created.

TIPSNAP - Snap Dump Memory

This subroutine enables a program to produce "snap" dumps of various
sections of memory. The specified locations of memory are displayed in a
report that is output to a file named "log.XXXXXXXX" where
"XXXXXXXX" is replaced by the name of the transaction that invoked
TIPSNAP.

Syntax:

CALL "TIPSNAP" USING Start-1 End-1

 [Start-2 End-2]

 [Start-3 End-3]

 [Start-4 End-4]

Start-n and End-n identify the starting and ending locations of an area to
be dumped in hexadecimal format to the log file.

Up to four pairs of parameters may be passed; each pair represents the
starting and ending location of an area of memory that is to be dumped.

If the area being dumped is larger than 32 bytes in length and contains all
character data, then it is dumped in character format to conserve space in
the log file. If the area being dumped is either less than 33 characters in
length or contains any non-character data, then it is dumped in
hexadecimal format.

TIP Programming Reference

294 Proprietary IP-622

Example:

CALL "TIPSNAP" USING WORK-AREA END-WORK

 MCS END-MCS

Additional Considerations:

 Start-1 and End-1 are mandatory parameters. Start-2 through End 4
are optional. However, if they are specified, they must be supplied in
pairs.

 If the call is made using:

CALL "TIPSNAP" USING MCS WORK-AREA

The call will still occur but you may not get the contents of the
snap. This is because TIP startup code uses UNIX MALLOC and
each area is allocated separately. It could be that the MCS and
WORK-AREA may not be contiguous. If this happens, try using:

CALL "TIPSNAP" USING MCS END-MCS

where END-MCS is a field in the MCS area

 This call is useful when debugging programs but should be removed
when placing a program in production.

 This call writes the information to the currently opened log file. If no
log file is currently open, one will be created automatically by the
TIPSNAP call. When this happens, TIPSNAP will automatically close
the log file after the memory dump has been performed. If on the
other hand, the log file is currently open, then TIPSNAP creates its
report in this log file and leaves it open after the memory dump has
been performed.

 This call differs from the TIPLOG FCS-FLUSH call as follows:

 TIPLOG CALLs are ignored if a log file is not currently open

 TIPSNAP will open the log file if it is not currently open

 This call will be ignored if the program is defined with the ―Log Never‖
option in SMPROG.

 Micro Focus COBOL compiler directive "REF" should allows a
programmer to correlate an address found in the TIPSNAP dump
back to an address within the application program. This can speed up
debugging time by allowing the programmer to find exact locations in
the dump much faster than trying to progress it manually.

Inglenet does not release the "make.mf" file with this option turned on
since it does make the listing much larger than usual.

Sample Log Files

The following are examples of log files created when a transaction called
TSTLOG was run. The first example is of a minimum (-d) log while the
second is an example of a detailed (-a) log.

Normal Log File (minimal format):
14:23:30 ***

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 295

14:23:30 * Entering application TSTLOG Stack level 1 *

* & PIB = 800B12C4 STATUS = PIB-GOOD *

* & CDA = 08081010 size 256 *

* & MCS = 08080444 thru 08080FFC, size 3000 *

* & WRK = 08078730 thru 08080430, size 32000 *

14:23:30 ROLL TSTLOG OPENING TIPQUE:ARCQUE

14:23:30 QUE OPEN 2 ARCQUE

14:23:30 FCS-OPEN 2 TIP$QUE Rec# 1 PIB-GOOD

14:23:30 QUE OPEN 2 ARCQUE Rec# 62 PIB-GOOD

14:23:30 ROLL 62 Records currently in queue.

14:23:30 QUE PUT 3 ARCQUE put 60 bytes

14:23:30 FCS-GETUPW 4 TIP$QUE Rec# 1 PIB-GOOD

14:23:30 FCS-GETUPW 4 TIP$QUE Rec# 64 PIB-NOTFOUND

14:23:30 FCS-ADD 4 TIP$QUE Rec# 64 PIB-GOOD

14:23:30 FCS-GETUPW 4 TIP$QUE Rec# 64 PIB-GOOD

14:23:30 FCS-GETUPW 4 TIP$QUE Rec# 63 PIB-GOOD

14:23:30 FCS-PUT 4 TIP$QUE Rec# 63 PIB-GOOD

14:23:30 FCS-PUT 4 TIP$QUE Rec# 64 PIB-GOOD

14:23:30 FCS-PUT 4 TIP$QUE Rec# 1 PIB-GOOD

14:23:30 FCS-TREN 2 ARCQUE COMMIT PIB-GOOD

14:23:30 FCS-TREN 2 ARCQUE COMMIT PIB-GOOD

14:23:30 QUE CLOSE 2 ARCQUE

14:23:30 FCS-GETUPW 4 TIP$QUE Rec# 1 PIB-GOOD

14:23:30 FCS-PUT 4 TIP$QUE Rec# 1 PIB-GOOD

14:23:30 FCS-CLOSE 2 TIP$QUE Rec# 1 PIB-GOOD

This is a test TIPLOG call, line number=00000001.

This is a test TIPLOG call, line number=00000002.

This is a test TIPLOG call, line number=00000003.

This is a test TIPLOG call, line number=00000004.

This is a test TIPLOG call, line number=00000005.

....+....1....+....2....+....3....+....4....+....5....+....6

1 : ' SNAP 00000005 '

61 : ' 62 Records currently in queue. '

121 : ' '

000000 : 00 3C 00 00 41 4C 4C 49 4E 53 4F 4E 53 2F 31 30 '.<..ALLINSONS/10'

000010 : 41 52 43 20 39 35 30 32 32 33 31 34 32 33 33 30 'ARC 950223142330'

000020 : 30 30 4E 00 54 49 50 4C 4F 47 2C 54 49 50 4C 4F '00N.TIPLOG,TIPLO'

000030 : 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 'G,TIPLOG,TIPLOG,'

000040 : 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 'TIPLOG,TIPLOG,TI'

000050 : 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 'PLOG,TIPLOG,TIPL'

000060 : 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 'OG,TIPLOG,TIPLOG'

000070 : 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 ',TIPLOG,TIPLOG,T'

000080 : 49 50 4C 4F 47 2C 54 49 'IPLOG,TI'

14:23:30 TIPRTN

Detailed Log File (-a option = ―all‖ format)
14:27:02 ***

14:27:02 * Entering application TSTLOG Stack level 1

* & PIB = 800B12C4 STATUS = PIB-GOOD

* & CDA = 08081010 size 256

* & MCS = 08080444 thru 08080FFC, size 3000

* & WRK = 08078730 thru 08080430, size 32000

---- [CDA AREA] len[256] ----

000000 : 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ' '

000010 : 53 4E 41 50 20 20 20 20 30 30 30 30 30 30 30 35 'SNAP 00000005'

000020 : 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ' '

000030 : 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ' '

000040 : 20 20 20 20 20 20 20 20 2C 2C 53 4E 41 50 2C 35 ' ,,SNAP,5'

000050 : 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ' '

000060 : thru 00008F same as last

000090 : 20 20 20 20 20 20 20 20 00 00 00 00 00 00 00 00 ''

0000A0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '.............'

0000B0 : thru 0000EF same as last

0000F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '.............'

14:27:02 No files present in Active file table

14:27:02 ROLL TSTLOG OPENING TIPQUE:ARCQUE

14:27:02 QUE OPEN 2 ARCQUE

14:27:02 FCS-OPEN 2 TIP$QUE Rec# 1 PIB-GOOD

TIP Programming Reference

296 Proprietary IP-622

14:27:02 QUE OPEN 2 ARCQUE Rec# 63 PIB-GOOD

14:27:02 ROLL 63 Records currently in queue.

14:27:02 QUE PUT 3 ARCQUE put 60 bytes

14:27:02 FCS-GETUPW 4 TIP$QUE Rec# 1 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 01 00 00 00 00 00 00 00 00 41 4C 4C 49 '............ALLI'

000010 : 4E 53 4F 4E 09 50 22 3F 01 42 32 9F 00 00 00 00 'NSON.P"?.B2.....'

000020 : 00 00 00 41 00 00 00 00 00 00 00 00 00 00 00 00 '...A............'

000030 : 41 52 43 51 55 45 20 20 00 00 00 02 00 00 00 40 'ARCQUE@'

000040 : 00 00 00 3F 00 00 00 00 00 00 00 00 00 00 00 00 '...?............'

000050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000060 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-GETUPW 4 TIP$QUE Rec# 65 PIB-NOTFOUND

Rec#='000000000'

---- [Data record] len[2048] ----

000000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000010 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-ADD 4 TIP$QUE Rec# 65 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 41 00 00 00 00 00 00 00 00 00 00 00 00 '...A............'

000010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000020 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-GETUPW 4 TIP$QUE Rec# 65 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 41 00 00 00 00 00 00 00 00 00 00 00 00 '...A............'

000010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000020 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-GETUPW 4 TIP$QUE Rec# 64 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 00 '...@............'

000010 : 00 00 00 3C 00 00 00 3A 00 00 41 4C 4C 49 4E 53 '...<...:..ALLINS'

000020 : 4F 4E 53 2F 31 30 41 52 43 20 39 35 30 32 32 33 'ONS/10ARC 950223'

000030 : 31 34 32 33 33 30 30 30 4E 00 54 49 50 4C 4F 47 '14233000N.TIPLOG'

000040 : 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 ',TIPLOG,TIPLOG,T'

000050 : 49 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 'IP..............'

000060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000070 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-PUT 4 TIP$QUE Rec# 64 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 41 '...@...........A'

000010 : 00 00 00 3C 00 00 00 3A 00 00 41 4C 4C 49 4E 53 '...<...:..ALLINS'

000020 : 4F 4E 53 2F 31 30 41 52 43 20 39 35 30 32 32 33 'ONS/10ARC 950223'

000030 : 31 34 32 33 33 30 30 30 4E 00 54 49 50 4C 4F 47 '14233000N.TIPLOG'

000040 : 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 ',TIPLOG,TIPLOG,T'

000050 : 49 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 'IP..............'

000060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000070 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:02 FCS-PUT 4 TIP$QUE Rec# 65 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 41 00 00 00 00 00 00 00 00 00 00 00 00 '...A............'

000010 : 00 00 00 3C 00 00 00 3A 00 00 41 4C 4C 49 4E 53 '...<...:..ALLINS'

000020 : 4F 4E 53 2F 31 30 41 52 43 20 39 35 30 32 32 33 'ONS/10ARC 950223'

000030 : 31 34 32 37 30 32 30 30 4E 00 54 49 50 4C 4F 47 '14270200N.TIPLOG'

000040 : 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 ',TIPLOG,TIPLOG,T'

000050 : 49 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 'IP..............'

000060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000070 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:03 FCS-PUT 4 TIP$QUE Rec# 1 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 01 00 00 00 00 00 00 00 00 41 4C 4C 49 '............ALLI'

000010 : 4E 53 4F 4E 09 50 22 3F 01 42 70 2F 00 00 00 00 'NSON.P"?.Bp/....'

000020 : 00 00 00 42 00 00 00 00 00 00 00 00 00 00 00 00 '...B............'

000030 : 41 52 43 51 55 45 20 20 00 00 00 02 00 00 00 41 'ARCQUEA'

000040 : 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 00 '...@............'

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 297

000050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000060 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

---- [Data] len[60] ----

000000 : 00 3C 00 00 41 4C 4C 49 4E 53 4F 4E 53 2F 31 30 '.<..ALLINSONS/10'

000010 : 41 52 43 20 39 35 30 32 32 33 31 34 32 37 30 32 'ARC 950223142702'

000020 : 30 30 4E 00 54 49 50 4C 4F 47 2C 54 49 50 4C 4F '00N.TIPLOG,TIPLO'

000030 : 47 2C 54 49 50 4C 4F 47 2C 54 49 50 'G,TIPLOG,TIP'

14:27:03 FCS-TREN 2 ARCQUE COMMIT PIB-GOOD

14:27:03 FCS-TREN 2 ARCQUE COMMIT PIB-GOOD

14:27:03 QUE CLOSE 2 ARCQUE

14:27:03 FCS-GETUPW 4 TIP$QUE Rec# 1 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 01 00 00 00 00 00 00 00 00 41 4C 4C 49 '............ALLI'

000010 : 4E 53 4F 4E 09 50 22 3F 01 42 70 2F 00 00 00 00 'NSON.P"?.Bp/....'

000020 : 00 00 00 42 00 00 00 00 00 00 00 00 00 00 00 00 '...B............'

000030 : 41 52 43 51 55 45 20 20 00 00 00 02 00 00 00 41 'ARCQUEA'

000040 : 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 00 '...@............'

000050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000060 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:03 FCS-PUT 4 TIP$QUE Rec# 1 PIB-GOOD

---- [Data record] len[2048] ----

000000 : 00 00 00 01 00 00 00 00 00 00 00 00 41 4C 4C 49 '............ALLI'

000010 : 4E 53 4F 4E 09 50 22 3F 01 42 70 2F 00 00 00 00 'NSON.P"?.Bp/....'

000020 : 00 00 00 42 00 00 00 00 00 00 00 00 00 00 00 00 '...B............'

000030 : 41 52 43 51 55 45 20 20 00 00 00 02 00 00 00 41 'ARCQUEA'

000040 : 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00 00 '...@............'

000050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

000060 : thru 0007EF same as last

0007F0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '................'

14:27:03 FCS-CLOSE 2 TIP$QUE Rec# 1 PIB-GOOD

This is a test TIPLOG call, line number=00000001.

This is a test TIPLOG call, line number=00000002.

This is a test TIPLOG call, line number=00000003.

This is a test TIPLOG call, line number=00000004.

This is a test TIPLOG call, line number=00000005.

....+....1....+....2....+....3....+....4....+....5....+....6

1 : ' SNAP 00000005 '

61 : ' 63 Records currently in queue. '

121 : ' '

000000 : 00 3C 00 00 41 4C 4C 49 4E 53 4F 4E 53 2F 31 30 '.<..ALLINSONS/10'

000010 : 41 52 43 20 39 35 30 32 32 33 31 34 32 37 30 32 'ARC 950223142702'

000020 : 30 30 4E 00 54 49 50 4C 4F 47 2C 54 49 50 4C 4F '00N.TIPLOG,TIPLO'

000030 : 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 'G,TIPLOG,TIPLOG,'

000040 : 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 'TIPLOG,TIPLOG,TI'

000050 : 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 'PLOG,TIPLOG,TIPL'

000060 : 4F 47 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 'OG,TIPLOG,TIPLOG'

000070 : 2C 54 49 50 4C 4F 47 2C 54 49 50 4C 4F 47 2C 54 ',TIPLOG,TIPLOG,T'

000080 : 49 50 4C 4F 47 2C 54 49 'IPLOG,TI'

14:27:03 TIPRTN

Source Code of TSTLOG program used to make log files:

The following listing is of the test program TSTLOG that was used to
create the above two logs files. By comparing the log files to the source
code, you can relate the debugging information to the program that
created it.

IDENTIFICATION DIVISION.

PROGRAM-ID. TSTLOG.

AUTHOR. INGLENET CORP.

DATE-WRITTEN. February 1999.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-PC. UNIVAC-OS3.

OBJECT-PC. UNIVAC-OS3.

*

TIP Programming Reference

298 Proprietary IP-622

* TIPLOG TEST PROGRAM:

*

* CDA PARAMETER USAGE

* P1 = OPEN - Create a log/TRID file internally

* P2 = DUMP - End program with a TIPDUMP Call

* P3 = SNAP - Test the TIPSNAP Call

* P4 = number of lines to write (default = 10)

*

/

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FUNCTION-CODES. COPY TC-FCS.

01 QUEUEING PICTURE X(80)

 VALUE "JUST WROTE SOME RECORDS TO THE QUEUE.".

01 LOG-MESSAGE.

 05 LOG-LITERAL-1 PICTURE X(40)

 VALUE "This is a test TIPLOG call, line number=".

 05 LOG-LINE-NUMBER PICTURE 9(8).

 05 LOG-LITERAL-2 VALUE "." PICTURE X(32).

/

LINKAGE SECTION.

01 PIB. COPY TC-PIB.

/

01 DUMMY.

 05 DUMMY-WORK PICTURE X(8).

01 WORK-AREA.

 05 WRK-MESSAGE.

 10 WRK-LITERAL-1 PICTURE X(40).

 10 WRK-COUNT PICTURE 9(8).

 10 WRK-LITERAL-2 PICTURE X(32).

 05 QUEUE-PKT.

 10 QUEUE-NAME PICTURE X(8).

 10 QUEUE-STS PICTURE X.

 05 STOP-FLAG PICTURE X.

 88 START-TEST VALUE "1".

 88 STOP-TEST VALUE "0".

 05 SNAP-FLAG PICTURE X.

 88 SNAP-NO VALUE "0".

 88 SNAP-YES VALUE "1".

 05 DUMP-FLAG PICTURE X.

 88 DUMP-NO VALUE "0".

 88 DUMP-YES VALUE "1".

 05 OPEN-FLAG PICTURE X.

 88 OPEN-NO VALUE "0".

 88 OPEN-YES VALUE "1".

 05 LOG-COUNT COMP SYNC PICTURE 9(5).

 05 WORK-LEN COMP SYNC PICTURE 9(4).

 05 WORK-REM COMP SYNC PICTURE 9(4).

 05 MAX-RECORD COMP SYNC PICTURE 9(8).

 05 TTL-RECORD COMP SYNC PICTURE 9(8).

 05 REC-COUNT PICTURE ZZZZZZZZ9.

 05 FILLER COMP SYNC PICTURE 9(5).

 05 QR-RECORD.

 10 QR-LENGTH COMP-4 SYNC PICTURE 9(4).

 10 FILLER PICTURE X(1).

 10 FILLER PICTURE X(1).

 10 QR-CLIENT.

 15 QR-CL-UID PICTURE X(8).

 15 QR-CL-TID PICTURE X(4).

 15 QR-CL-LOCAP PICTURE X(4).

 15 QR-CL-DATE PICTURE 9(6).

 15 QR-CL-TIME PICTURE 9(8).

 15 QR-CL-PRINT PICTURE X.

 15 FILLER PICTURE X.

 10 QR-DATA PICTURE X(100).

 10 QR-END PICTURE X.

/

01 CDA. COPY TC-CDA.

 05 CDA-END PICTURE X.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 299

/

PROCEDURE DIVISION USING PIB

 CDA

 DUMMY

 WORK-AREA.

INITALIZATION.

 MOVE 60 TO QR-LENGTH

 MOVE 3 TO MAX-RECORD

 MOVE 0 TO TTL-RECORD

 MOVE 0 TO PIB-MIRAM-REL-REC-NUM

 MOVE ALL "TIPLOG," TO QR-DATA

 SET START-TEST TO TRUE

 MOVE "ARCQUE" TO QUEUE-NAME

SET OPEN-NO TO TRUE

 IF CDA-PARAM (1) = "OPEN"

 SET OPEN-YES TO TRUE

 CALL "TIPLOG" USING FCS-OPEN

 END-IF

SET DUMP-NO TO TRUE

 IF CDA-PARAM (2) = "DUMP"

 SET DUMP-YES TO TRUE

 END-IF

SET SNAP-NO TO TRUE

 IF CDA-PARAM (3) = "SNAP"

 SET SNAP-YES TO TRUE

 END-IF

MOVE 10 TO LOG-COUNT

 IF CDA-PARAM (4) IS NUMERIC

 MOVE CDA-PARAM (4) TO LOG-COUNT

 END-IF

 MOVE "TSTLOG OPENING TIPQUE:ARCQUE" TO CDA-TEXT

 CALL "ROLL" USING CDA-TEXT

 PERFORM OPEN-TIPQUEUE

 IF PIB-GOOD

 IF PIB-MIRAM-REL-REC-NUM > 0

 MOVE "xxxxxxxxx Records currently in queue."

 TO CDA-TEXT

 MOVE PIB-MIRAM-REL-REC-NUM TO REC-COUNT

 MOVE REC-COUNT TO CDA-TEXT (1:9)

 CALL "ROLL" USING CDA-TEXT

 END-IF

 PERFORM WRITE-DATA

 PERFORM ISSUE-TREN

 ELSE

 CALL "TIPFCER" USING QUEUE-PKT

 CDA-TEXT

 CALL "ROLL" USING CDA-TEXT

 END-IF

 MOVE 0 TO PIB-MIRAM-REL-REC-NUM

 PERFORM CLOSE-TIPQUEUE

 MOVE LOG-MESSAGE TO WRK-MESSAGE

 MOVE 0 TO WRK-COUNT

 PERFORM UNTIL WRK-COUNT >= LOG-COUNT

 ADD 1 TO WRK-COUNT

 CALL "TIPLOG" USING FCS-PUT

 WRK-MESSAGE

 END-PERFORM

 MOVE "$" TO CDA-END

 IF SNAP-YES

 CALL "TIPLOG" USING FCS-FLUSH

 CDA CDA-END

 QR-RECORD QR-END

 END-IF

 IF DUMP-YES

 CALL "TIPDUMP"

 END-IF

 IF OPEN-YES

 CALL "TIPLOG" USING FCS-CLOSE

 END-IF

TIP Programming Reference

300 Proprietary IP-622

 CALL "TIPRTN".

/

WRITE-DATA.

 PERFORM WRITE-RECORDS

 IF PIB-GOOD

 SET PIB-COMMIT TO TRUE

 PERFORM ISSUE-TREN

 ELSE

 SET PIB-ROLLBACK TO TRUE

 PERFORM ISSUE-TREN

 SET STOP-TEST TO TRUE

 CALL "TIPFCER" USING QUEUE-PKT

 CDA-TEXT

 CALL "ROLL" USING CDA-TEXT

 END-IF.

WRITE-RECORDS.

 MOVE PIB-UID TO QR-CL-UID

 MOVE PIB-TID TO QR-CL-TID

 MOVE PIB-LOCAP TO QR-CL-LOCAP

 ACCEPT QR-CL-DATE FROM DATE

 ACCEPT QR-CL-TIME FROM TIME

 MOVE "N" TO QR-CL-PRINT

 ADD 1 TO TTL-RECORD

 PERFORM PUT-TIPQUEUE.

OPEN-TIPQUEUE.

 CALL "TIPQUEUE" USING FCS-OPEN

 QUEUE-PKT.

PUT-TIPQUEUE.

 CALL "TIPQUEUE" USING FCS-PUT

 QUEUE-PKT

 QR-RECORD.

CLOSE-TIPQUEUE.

 CALL "TIPQUEUE" USING FCS-CLOSE

 QUEUE-PKT.

ISSUE-TREN.

 CALL "TIPFCS" USING FCS-TREN

 QUEUE-PKT.

Source-level Debugging

Source level debugging is a powerful feature of both the Micro Focus and
COBOL-IT compilers. Before attempting to use this feature, you should
read the appropriate sections of the compiler documentation regarding
source level debugging.

 The Micro Focus source level debugger is called ―animator‖.

 The COBOL-IT debugger is part of the COBOL-IT development
system which is based on Eclipse

Each compiler has a special procedure that is required to invoke its
source level debugging features. These procedures involve special
compiling options that must be selected when the program is compiled.

 Note: Compiling a program for source level debugging creates a binary image
that contains considerably more information. These programs require
more overhead to execute. You should only compile your programs with
these options when you intend to use the source level debugging
features. Once the programs have been thoroughly tested and debugged
and are ready for production, they should always be compiled without the
debugging options. This will create the most efficient operating
environment for your on-line system.

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 301

Compiling the program with special options is only part of the story. Once
this has been done, the on-line program has to be invoked in a special
way to have the appropriate debugger operate correctly.

 For standard (non-TIP) programs, these procedures are outlined in
the appropriate COBOL compiler documentation.

 For TIP transaction programs, you must follow the steps outlined
below:

Using Two Terminals for Debugging

You must follow a special procedure before using the COBOL compiler
source level debuggers.

 Note: The problem is that both the debugger and TIP want to have control of
the terminal display and keyboard.

To overcome this problem, have the source level debugger interact with
the primary (or first) terminal ("Terminal A"), and have TIP use a second
terminal ("Terminal B") to interact with the transaction program.

Step 0: Compile

Compile your transaction program, trid, with debugging options:

Micro Focus
Edit make.mf for debugging.

 Comment out the non-debugging MFOPT line, and restore
(uncomment) the appropriate MFOPT debugging line.

Online:
MFOPT = -gUa -I TIPFCS -I TIPMSGO -I TIPMSG

-I TIPH2P -I TIPSUB

Bbatch:
MFOPT = -gUa -I BATFCS -I INITFTAB

Now compile:
make -f make.mf trid

MBP
Specify the debugging option on the command line.

make -f make.mbp trid VISOPT=%debug+

After compiling, verify that the support files for debugging have been
created:

Compiler Extensions

Micro Focus .int, .idy

TIP Programming Reference

302 Proprietary IP-622

Step 1: UNIX Sessions

Establish two UNIX sessions on the same UNIX host. (You can use
TIP/fe as your terminal emulator.)

Step 2: Get Termids

From Terminal A, execute the following command to determine its
termid:

who am i

Now, switch to Terminal B and get its termid:

who am i

In this example, the termid for the first session is ―pts/3‖; and the second
is "pts/6".

By the way, you might want to find the termid for your sessions without
having to switch sessions. For example, if your user id is ―ianm‖, you
could get a list of all your termids as follows:

who | grep ianm

Step 3: Sleep

On Terminal B, execute the Unix sleep command.

sleep 20000

This causes terminal B to sleep for 20,000 seconds (about 5.5 hours).

Later you will switch the MCS interaction to this session. This is to avoid
the problems that occur when two programs try to get input from the
same terminal.

Step 4: Enable Debugging (from UNIX/LINUX)

You can enable debugging at this point from UNIX/LINUX, or later from
TIP.

From Terminal A:

Micro Focus
To enable animation for all Micro Focus COBOL programs
compiled with debugging options, set the COBSW
environment variable to +A from the UNIX command line:
export COBSW=+A

Step 5: Change to Debugging Directory

On Terminal A:

Micro Focus
Either:

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 303

 Go to the directory containing your COBOL source code
and debugger support files, or

 set the COBPATH environment variable to include the
directory containing your COBOL source code. For
example:
export COBPATH=/prod/src/;test/src;/my/src

Step 6: Start TIP

On Terminal A (pts/3), enter the TIP command line processor (tipix)
using the -t option and specifying the termid of Terminal B (pts/6):

tipix -t pts/6

TIP will display its screens on Terminal B.

Step 7: Enable Debugging (from TIP)

If you have not already enabled debugging from UNIX, you must enable it
now. You can use smprog or environment variables:

With smprog:

From Terminal B, use the smprog utility to set the debug attribute for
this transaction program. This defines which debugger, if any, TIP will use
when running this transaction program.

Debugger Debug Attribute

Micro Focus Animator A

COBOL-IT C

OpenCOBOL O

This is very useful when you are debugging a program, which is invoked
by another program (by means of TIPSUB, TIPXCTL, etc.).

If you do not want to set the debug attribute for all users of a program,
you should create a second program definition. For example, if you want
to debug program PAY001, add a program definition for PAY001T with
the appropriate debug attribute for your compiler. Then create a security
entry in your user id group that references the PAY001T definition. That is
MYUID/PAY001 references PAY001T, and TIPY/PAY001 references
PAY001.

TIP Programming Reference

304 Proprietary IP-622

With Environment Variables from TIP Command Line:

From Terminal B:

Micro Focus
To enable animation for all Micro Focus COBOL programs
compiled with debugging options, set the COBSW
environment variable to +A from the TIP command line:
setenv COBSW=+A

Step 8: Run

From Terminal B, run your transaction:

Micro Focus:
If you used smprog to set the debug attribute, just enter
the transaction name at the TIP command line:
trid

 If you set the COBSW environment variable to +A, just
enter the transaction name at the TIP command line:
trid

 If the .int file cannot be found, you get "Load error 173".

 If the .idy file cannot be found, you get a message to this
effect.

The debugger (and your source code) should appear on Terminal A, your
transaction executes on Terminal B.

Step 9: Cancel Sleep

When you are finished debugging, switch to terminal B.

Execute the FIN command from the TIP command line. TIP displays a
message that says how to cancel the sleep program. The key sequence
to press depends on the interrupt key for your UNIX session.

For example if stty -a indicates intr = ^c then the message displayed by
the TIP shell upon exit will be:

Press Control-C to stop 'sleep'

Follow the instructions.

Step 10: Unset

If you set COBSW, you should unset it to deactivate animation.

unset COBSW

 File Control System (FCS)

September 2011 Draft 2.5 - Confidential 305

Using Micro Focus cobanimsrv

If you have compiled a transaction program for debugging then using
‗smprog‘ define the transaction definition in TIP/ix to be invoked with
Animator and place some unique value in the ‗Debugger Tag‘ field.

Then on a Unix/Linux terminal session:

setenv COBANIMSRV myval

cobanimsrv

Where ‗myval‘ is the same value you defined with smprog.

When Tip/ix execute the transaction it will also define the environment
variable COBANIMSRV with the defined value to connect the running
program to the MF Animator.

TIP Programming Reference

306 Proprietary IP-622

Reference Tables

The following Hexadecimal – Decimal Conversion table may be used to convert decimal

numbers (base 10) to and from hexadecimal numbers (base 16).

Hexadecimal - Decimal Conversion

6 5 4 3 2 1

Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec

0 0 0 0 0 0

1
1 048
576

65
536

1 4 096 1 256 1 16 1 1

2
2 097
152

2
131
072

2 8 192 2 512 2 32 2 2

3
3 145
728

3
196
608

3
12
288

3 768 3 48 3 3

4
4 194
304

4
262
144

4
16
384

4 1 024 4 64 4 4

5
5 242
880

5
327
680

5
20
480

5 1 280 5 80 5 5

6
6 291
456

6
393
216

6
24
576

6 1 536 6 96 6 6

7
7 340
032

7
458
752

7
28
672

7 1 792 7 112 7 7

8
8 388
608

8
524
288

8
32
768

8 2 048 8 128 8 8

9
9 437
184

9
589
824

9
36
864

9 2 304 9 144 9 9

A
10
485
760

A
655
360

A
40
960

A 2 560 A 160 A 10

B
11
534
336

B
720
896

B
45
056

B 2 816 B 176 B 11

C
12
582
912

C
786
432

C
49
152

C 3 072 C 192 C 12

D
13
631
488

D
851
968

D
53
248

D 3 328 D 208 D 13

E 14
680

E
917
504

E
57
344

E 3 584 E 224 E 14

 Reference Tables

September 2011 Draft 2.5 - Confidential 307

6 5 4 3 2 1

064

F
15
728
640

F
983
040

F
61
440

F 3 480 F 240 F 15

Powers of 2

n 2n n 2 n n 2 n

0 1 11 2 048 22 4 194 304

1 2 12 4 096 23 8 388 608

2 4 13 8 192 24 16 777 216

3 8 14 16 384 25 33 554 432

4 16 15 32 768 26 67 108 864

5 32 16 65 536 27 134 217 728

6 64 17 131 072 28 268 435 456

7 128 18 262 144 29 536 870 912

8 256 19 524 288 30 1 073 741 824

9 512 20 1 048 576 31 2 147 483 648

10 1024 21 2 097 152 32 4 294 967 296

Powers of 16

n 16 n n 16 n

0 1 8 4 294 967 296

1 16 9 68 719 476 736

2 256 10 1 099 511 627 776

3 4 096 11 17 592 186 044 416

TIP Programming Reference

308 Proprietary IP-622

n 16 n n 16 n

4 65 536 12 281 474 976 710 656

5 1 048 576 13 4 503 599 627 370 496

6 16 777 216 14 72 057 594 037 927 936

7 268 435 456 15 1 152 921 504 606 846 976

ASCII Code Chart.

The following table is the character code table for the American Standard
Code for Information Interchange (ASCII).

ASCII characters from X'80' to X'FF' are generally undefined, but many
vendors use this range to provide international characters and other
implementation specific items.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x
nu
l

so
h

st
x

et
x

eo
t

en
q

ac
k

be
l

bs ht lf vt ff cr so si

1x

dl
e

dc
1

dc
2

dc
3

dc
4

na
k

sy
n

et
b

ca
n

e
m

su
b

es
c

fs gs rs us

2x

sp ! " # $ % & ' () * + , _ . /

3x

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^ _

6x ` a b c d e f g h i j k l m n o

7x p q r s t u v w x y z { | } ~
de
l

Standard Windows Character Set

The following table is the standard Windows character set:

 Reference Tables

September 2011 Draft 2.5 - Confidential 309

ISO 8859-1 (Latin-1 or ANSI) Code Chart (Windows variant)

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x nul soh stx etx eot enq ack bel bs ht lf vt ff cr so si

1x dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us

2x sp ! " # $ % & ' () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^ _

6x ` a b c d e f g h I j k l m n o

7x p q r s t u v w x y z { | } ~ del

8x € • ‚ ƒ „ ... † ‡ ˆ ‰ Š ‹ Œ • Ţ •

9x • ‘ ’ " " • Ŕ ŕ ˜ ™ š › œ • ţ Ÿ

Ax hsp ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯

Bx ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

Cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

Dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

Ex à á â ã ä å æ ç è é ê ë ì í î ï

Fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

 Note: The glyphs assigned to the code points from 0x80 through 0x9F are not
part of the official ANSI character set. These glyphs are part of the MS
Windows version of the ANSI code set.

National Replacement Character (NRC) Mappings

The following chart shows the National Replacement Character (NRC) Mappings:

Language Code National Replacement Character (NRC) Mappings

EBCDIC

Decimal

Hex

123

7B

$

91

5B

@

124

7C

[

74

4A

\

224

E0

]

79

4F

^

95

5F

_

109

6D

`

121

79

{

192

C0

|

106

6A

}

208

D0

~

161

A1

ASCII

Decimal

Hex

ASC

35

23

$

36

24

@

64

40

[

91

5B

\

92

5C

]

93

5D

^

94

5E

_

95

5F

`

96

60

{

123

7B

|

124

7C

}

125

7D

~

126

7E

British

United
Kingdom

BRI

£

163

A3

$

36

24

@

64

40

[

91

5B

\

92

5C

]

93

5D

^

94

5E

_

95

5F

`

96

60

{

123

7B

|

124

7C

}

125

7D

~

126

7E

TIP Programming Reference

310 Proprietary IP-622

Language Code National Replacement Character (NRC) Mappings

Canadian

French CFR

35

23

$

36

24

à

224

E0

â

226

E2

ç

231

E7

ê

234

EA

î

238

EE

_

95

5F

ô

244

F4

é

233

E9

ù

249

F9

è

232

E8

û

251

FB

Norwegian

Danish NOR

35

23

$

36

24

Ä

196

C4

Æ

198

C6

Ø

216

D8

Å

197

C5

Ü

220

DC

_

95

5F

ä

228

E4

æ

230

E6

ø

248

F8

å

229

E5

ü

252

FC

Dutch

DUT

£

163

A3

$

36

24

¾

190

BE

[

91

5B

½

189

BD

|

124

7C

^

94

5E

_

95

5F

`

96

60

¨

168

A8

ƒ

131

83

¼

188

BC

´

180

B4

Finnish

FIN

35

23

$

36

24

@

64

40

Ä

196

C4

Ö

214
D6

Å

197

C5

Ü

220

DC

_

95

5F

é

233

E9

ä

228

E4

ö

246

F6

å

229

E5

ü

252

FC

French

Belgian FRE

£

163

A3

$

36

24

à

224

E0

º

186

BA

ç

231

E7

§

167

A7

^

94

5E

_

95

5F

`

96

60

é

233

E9

ù

249

F9

è

232

E8

¨

168

A8

German

GER

35

23

$

36

24

§

167

A7

Ä

196

C4

Ö

214
D6

Ü

220

DC

^

94

5E

_

95

5F

`

96

60

ä

228

E4

ö

246

F6

ü

252

FC

ß

223

DF

Italian

ITA

£

163

A3

$

36

24

§

167

A7

º

186

BA

ç

231

E7

é

233

E9

^

94

5E

_

95

5F

ù

249

F9

à

224

E0

ò

242

F2

è

232

E8

ì

236

EC

Portuguese

POR

35

23

$

36

24

@

64

40

Ã

195

C3

Ç

199

C7

Õ

213

D5

^

94

5E

_

95

5F

`

96

60

ã

227

E3

ç

231

E7

õ

245

F5

~

126

7E

Spanish

SPA

£

163

A3

$

36

24

§

167

A7

¡

161

A1

Ñ

209

D1

¿

191

BF

^

94

5E

_

95

5F

`

96

60

º

186

BA

ñ

241

F1

ç

231

E7

~

126

7E

Swedish

SWE

35

23

¤

164

A4

@

64

40

Ä

196

C4

Ö

214
D6

Å

197

C5

Ü

220

DC

_

95

5F

é

233

E9

ä

228

E4

ö

246

F6

å

229

E5

ü

252

FC

Swiss

French

German

SWI

ù

249

F9

$

36

24

à

224

E0

é

233

E9

ç

231

E7

ê

234

EA

î

238

EE

è

232

E8

ô

244

F4

ä

228

E4

ö

246

F6

ü

252

FC

û

251

FB

 Reference Tables

September 2011 Draft 2.5 - Confidential 311

EBCDIC Code Chart

The following table is the character code table for the Extended Binary-
Coded Decimal Interchange Code (EBCDIC).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x nul soh stx etx ht del vt ff cr so si

1x dle dc1 dc2 dc3 bs can em fs gs rs us

2x ds sos fs lf etb esc enq ack bel

3x syn eot dc4 nak sub

4x sp [. < (+]

5x & ! $ *) ; ^

6x - / | , % _ > ?

7x ` : # @ ' = "

8x a b c d e f g h i

9x j k l m n o p q r

Ax ~ s t u v w x y z

Bx

Cx { A B C D E F G H I

Dx } J K L M N O P Q R

Ex \ S T U V W X Y Z

Fx 0 1 2 3 4 5 6 7 8 9

EBCDIC NRC Chart

The following table is the EBCDIC NRC Chart:

EBCDIC ANSI Code based on NLS option selected –N xx where xx=

Char Hex
sp

(Spain)

dn

(Denmark
/Norway)

fr

(France)

ge

(Germany)

sw

(Sweden
/Finland)

uk

(United
Kingdom)

it

(Italy)

7B £ A3 # 23 £ A3 # 23 # 23 £ A3 £ A3

TIP Programming Reference

312 Proprietary IP-622

EBCDIC ANSI Code based on NLS option selected –N xx where xx=

$ 5B $ 24 $ 24 $ 24 $ 24 ¤ A4 $ 24 $ 24

@ 7C § A7 @ 40 à E0 § A7 É C9 @ 40 § A7

[4A ¡ A1 Æ C6 º BA Ä C4 Ä C4 [5B ° B0

\ E0 Ñ D1 Ø D8 ç E7 Ö F6 Ö F6 \ 5C # 23

] 4F ¿ BF Å C5 § A7 Ü DC Å C5] 5D é E9

^ 5F ^ 5E ^ 5E ^ 5E ^ 5E Ü DC ^ 5E ^ 5E

` 79 ` 60 ` 60 ` 60 ` 60 é E9 ` 60 ù F9

{ C0 ° B0 æ E6 É E9 Ä E4 Ä E4 { 7B à E0

| 6A ñ F1 ø F8 Ù F9 Ö F6 Ö F6 | 7C ò F2

} D0 ç E7 å E5 È E8 Ü FC Å E5 } 7D è E8

~ A1 ~ 7E ¯ AD ¨ A8 ß DF Ü FC ~ 7E Ì EC

Error Codes

This chapter contains some hints on how to track down errors that occur
when running batch shell scripts on Unix.

Unix Shell Error

When the Unix shell reports an error the message text is prefixed with
"UX:sh"

For example:

myjob.sh: 12:31:53 myjob: executing myprog

UX:sh (myjob.sh): ERROR: myprog: Not found

Either the file, myfile, was not found in the PATH (obvious), or the file was
found but the user did not have execute permission for the file (not so
obvious).

Micro Focus Cobol

Micro Focus COBOL file handler errors appear in the form n/nnn.

You can look up these messages in the Micro Focus COBOL System
Reference in the appendix titled "File Handler Utility Error Messages"

 Reference Tables

September 2011 Draft 2.5 - Confidential 313

For example:

myjob.sh: 12:47:44 myjob: executing myprog
 I/O error : file 'MYFILE'
 error code: 9/065 (ANS74), pc=0, call=1, seg=0

 65 File locked

Look under the subsection "When status1 is Set to 9", then look for a
Status2 value of "065".

Note: This particular message can be eliminated by adding the option
CALLFH\"ARMFH\" to the Micro Focus COBOL compiler options in your
makefile.

Return Status from Unix System Calls

Sometimes a program reports an error number (status) that it receives
from a Unix system call (that your application has called).

These can be found in the module errno.h which is usually in
/usr/include/sys/errno.h. If it is not in this directory you can find it by
going to the root directory and entering this command:

find . -name errno.h -print

The file errno.h associates error numbers with symbolic names. There is
usually a text description associated with the symbolic name. On some
systems all three appear together on a single line. On others, the
associations are in two separate parts of errno.h.

D-ISAM Error Codes

The following table is from the D-ISAM file system documentation, a
product of Byte Designs Inc. that is included in TIP.

Error Description

1- 99

Errors less than 100 generally emanate from the Unix
system, and can be found in errno.h. See previous
section.

100

An attempt was made to (re)write a duplicate where
duplicates are prohibited, or an attempt was made to
REWRITE(F) where the primary key permitted
duplicates.

101 The fd parameter does not reference an opened file.

102
One of the arguments has a value with no defined
meaning.

TIP Programming Reference

314 Proprietary IP-622

Error Description

103 The values of key are not valid.

104
All ISAM file descriptors are used, you cannot open
any more files

105
The ISAM file is corrupted, it must be repaired with
DCHECK.

106 Exclusive access to the file is not possible.

107
Another process has a read-only lock on the
requested record.

108
The value of key has already been established as a
key.

109
The requested function may not be performed on the
primary key, as requested.

110
The beginning or end of the file has already been
reached.

111 No record was found to match your request.

112 There is no "current" record set at this time.

113
The file has been exclusively locked by another
process, or if trying to establish an exclusive lock,
another process is using the file.

114
The name given for the file is too long or contains
unacceptable characters.

115
The lock file cannot be created. Presently not used by
D-ISAM.

116
malloc() cannot allocate the request. Usually means
out of memory, but possibly the allocation list is
corrupted.

The error message text depends on the application program (such as
armdata or armsort), but generally is of the form: "Error ### accessing
file" (### represents an error number greater than 99.

Information Management System(IMS)

This chapter will explain how TIP emulates an IMS program and it will
also state the known differences between IMS and TIP programs. Please
keep your Unisys Information Management System (IMS) Programming

 Reference Tables

September 2011 Draft 2.5 - Confidential 315

Guide ref # UP-9207 manual on hand as a reference for any IMS
problems.

TIP and IMS Interaction

In some situations it may be necessary to have a native mode TIP
program call an IMS program that is running under emulation or have an
IMS emulated program call a TIP native mode program. IMS programs
run under control of the TIP IMS Emulator. The IMS Emulator is designed
to "emulate" the IMS environment; it does not give IMS programs access
to TIP facilities. IMS and TIP programs may transfer control to each other;
however, this interaction must take place according to very specific rules.
In any case, the contents of the CDA are copied to and from the
programs involved.

An IMS program may "succeed" (an IMS term) to a TIP program by
utilizing one of the following methods:

To accomplish external succession, the IMS program must:

MOVE "??????" TO SUCCESSOR-ID

MOVE "E" TO TERMINATION-INDICATOR

 When the terminal user responds to the screen information that is
(usually) output when the IMS program terminates, the specified TIP
transaction identified in the SUCCESSOR-ID field is called. To
accomplish delayed internal succession, the IMS program must:

MOVE "??????" TO SUCCESSOR-ID

 MOVE "D" TO TERMINATION-INDICATOR

 MOVE ZERO TO TEXT-LENGTH OF OMA

 Note: The latter point is crucial - the TIP program does not have an Input
Message Area (IMA). Consequently, the IMS program may not leave text
in the Output Message Area (OMA) to be carried forward to the next
program's Input Message Area (IMA).

The IMS PIB field SUCCESSOR-ID is defined as a 6-byte field; the
choice of TIP transaction names is, therefore, limited to six characters
when a TIP program is called from an IMS program. To get around this
restriction define the TIP transaction twice: once with a six-character
name for succession purposes and a second time with whatever name
the transaction may need for other types of invocation.

A TIP native mode program may call an IMS program by using the
"TIPXCTL" or "TIPDXC" subroutines. The TIP program must move the
defined name of the IMS program to "PIB-TRID" and then issue the CALL
to "TIPXCTL" (or "TIPDXC").

TIP Programming Reference

316 Proprietary IP-622

 Note: You must define IMS programs, whether they are actions or
transactions. Define an action with the executable module name as the
TIP transaction name.

It is usually inappropriate to invoke an IMS transaction via TIPXCTL if the
transaction is expecting data in its Input Message Area (IMA) - since
control came directly from a TIP program, there will be nothing in the IMA
- this will likely cause the IMS program to be fatally confused.

Output for Input Queuing, from IMS Programs

Output for Input queuing is usually invoked with a CALL SEND statement
that has the AUX-ID field of the OMA set to an "I".

You use the SMTERM utility to define terminal names, so that a CALL
SEND statement can attempt to queue the message to the terminal name
in the destination field of the OMA.

When printing from IMS applications, your application must set AUX-ID to
―I‖. In addition:

 To start the next transaction as a TIP background program, have your
application set the OMA AUX-NO to "F".

 To output to a named terminal, specify PARAM IMSFORKW=NO in
the "tipix.conf" file.

 To output to a new window, you must be running TIP/fe in smart
mode. In addition, you must either:

8. specify PARAM IMSFORKW=YES in the "tipix.conf" file, or

9. have your application set the OMA AUX-NO to "W".

Effect AUX-NO AUX-ID
TIP/fe
smart
mode

IMSFORKW

Start in
background

F I

Queue to
named
terminal

 I NO

Open new
window

 I Yes YES

 W I Yes

Error Conditions:

 If starting up a new TIP/fe window fails, your application gets IMS
STATUS = 4 and Detailed status = 8.

 Reference Tables

September 2011 Draft 2.5 - Confidential 317

 If redirecting to a specific terminal fails because the terminal is not
available, your application gets IMS STATUS = 6 and Detailed status
= 4.

IMS Status Codes

When TIP is emulating IMS, if an error occurs and the error code from
TIP does not map into a documented (or known) pair of values for the
IMS STATUS-CODE and DETAILED-STATUS-CODE then the following
occurs:

 The IMS STATUS-CODE (in the PIB) is set to 4

 the IMS DETAILED-STATUS-CODE (also in the PIB) is set to the TIP
error code (PIB-STATUS value).

The TIP PIB-STATUS code is always a displayable ASCII character.
Displayable ASCII characters have decimal values greater than 31 so
there is no conflict (overlap) with the range of values documented for the
IMS DETAILED-STATUS-CODE. For example, a value of decimal 90
(hex 5A) is an ASCII 'Z' which means PIB-FULL. For a list of values for
PIB-STATUS, see PIB - Process Information Block in the TIP
Programming Reference.

Known Differences between IMS and TIP

In this section we will make mention to all known differences between
IMS and TIP programs.

Call Send:
After the first Call Send the OMA-AUX-FUNCTION field is
cleared of the "I" function. This results in the second Call
Send not being set to Output for Input queued. On TIP/30
this OMA field was not effected by the call send.

TIP Programming Reference

318 Proprietary IP-622

Index

'$PRIMARY

TIPPEER' ... 53

* field characteristic' 119

*BYP

reserved terminal name 41

*MST

reserved terminal name 41

.B field characteristic 119

.P field characteristic 119

.U field characteristic 119

ACCEPT

COBOL verb' 13

access

existing dynamic file' 215

Accessing TIP/ix Journal Files 254

'account code

PIB ... 13

accumulating print lines' 238

accuracy

of time' ... 13

Activating the log file 284

Active File Table

see AFT' ... 159

add

direct

add record' 202

indexed record 174

line to edit buffer' 223

addresses of storage area' 7

AFT

Active File Table' 159

and FCS 203, 210, 212, 217, 224,

233

after images 260

'after images

purpose' .. 159

'after images' 168, 254

ASCII code chart 303

ASCII Code Chart. 303

assign

dynamic

assign file' 216

assigning

format names' 88

asynchronous

process creation 41

audit

and journal file 254

automatic passing of parameters' 7

AUX0

and TIPPRINT' 238

AUX1

and TIPPRINT' 238

auxiliary device' 238

BACK$nnn

PIB ... 13

with TIPFORKW' 45

BACK$nnn' ... 43

background process

BACK$nnn' 13

background program

start in new window' 45

 Index

September 2011 Draft 2.5 - Confidential 319

start with TIPFORK' 43

BAT

BATACTIV entry point................. 263

BATCOMIT entry point............. 264

BATFCS entry point 263

BATPIB entry point 263

BATROLBK entry point 264

batch

interface ... 262

Batch Commit and Rollback 264

batch interface

rollback

commit .. 264

batch journal file

access ... 260

close .. 260

open .. 260

read ... 260

Batch Journal File Access 260

BATFCS

commit and rollback 264

BATPEER - Peer-to-Peer from Batch 30

BATQUEUE - Queuing from Batch ... 30

before images 260

purpose' .. 159

before images' 168, 254

BIT .. 34

bits

convert bits to bytes' 34

'BOF

bottom of form' 238

'BREAK

check for operator break' 134

BREAK - Check For Operator Break 134

break message' 134

BU ... 243

buffer

for TIPPRINT' 240

BUFFER' ... 241

buffer size

minimum

max' .. 243

'buffering

TIPPRINT' 249

bytes

convert bytes to bits' 31

CALL TIPFCER - Interpret FCS Error

... 171

Call TIPFCS - Common Parameters . 164

calling

TIP ... 73

TIPFCS' 164

'calling

TIPQUEUE' 64

Calling TIP/ix Utilities 73

cancel

direct

cancel update' 207

indexed

cancel update 191

'carriage control

copy book' 249

CDA

introduction and example' 22

passed to transaction' 7

program to program data transfer' .. 8

TIP Programming Reference

320 Proprietary IP-622

'CDA

CDA= and PIB 13

CDA - Continuity Data Area 22

change elective groups

with TIPGRPST' 48

'client ... 68

climbing the stack' 8

close

direct

close file' 203

dynamic

close file' 217

edit buffer' 224

indexed file.............................. 175

library

close element (no update)' ... 234

library element' 233

sequential

close file' 210

TIPPRINT interface' 240

'close

TIPPEER conversation' 57

TIPQUEUE' 65

Close the Conversation CLOSE......... 57

Close the Log File 286

Closing a Queue - FCS-CLOSE 65

CMTCHAR=' 124

COBOL

ACCEPT' ... 13

MBP Visual COBOL 85 278

Micro Focus................................ 278

COBOL Makefiles 280

COBPATH

environment variable 296

coding suggestion' 8

combining transmissions' 107

common carrier lines' 84

common storage' 25

communications codes' 84

construction of prompt' 137

Contents ... i

Context Sensitive Help 123

context sensitive help' 123

continuation prompts' 133

Continuity Data Area

see CDA' ... 22

see CDA' ... 7

control codes

DCIO' ... 83

convert

bits to bytes' 34

bytes to bits' 31

hex to decimal 301

copy book

TC 13, 31, 34, 143, 165, 166, 168, 232,

243, 249, 254

'copy book

file .. 266

TC 22, 24, 37, 47, 88, 146, 249

create

asynchronous process 41

dynamic

create files' 217

creating

screen formats' 84

CURSOR................................... 105, 123

 Index

September 2011 Draft 2.5 - Confidential 321

Cursor Positioning 123

cursor positioning' 123

D 308

D value

and MCS .. 111

'D630

printer option

Diablo' .. 238

DAM

Direct Access Method' 202

data

area layout' 84

transfer from program to program' . 8

validation' 105

data fields

uppercase' .. 84

date

PIB ... 13

TIPDATE subroutine' 34

DATE .. 34

DCIO

DCIO 143, 147, 149, 150

direct communications input output'

... 83

debugging

source level 296

'debugging

on ... 283

statements' 285

Debugging on-line programs 283

default

data' .. 111

terminal destination' 88

deferral

of transaction end' 25

deferred error text

defining' ... 107

defining

deferred error text' 107

help text' 124

screen formats' 84

delay program execution' 75

delayed

internal succession' 310

transfer control' 35

delete

direct

delete record' 204

edit buffers

delete line' 225

indexed record 175

logical record' 172

permanent' 172

physical record' 172

delimiters

parameter' 135

delivering

error message text' 105

'developing

client .. 68

Developing Client-Server Applications

... 68

DI .. 249

DICE codes

and T .. 149

DICE codes' 135

TIP Programming Reference

322 Proprietary IP-622

direct access

and TIPFCS' 202

direct communications I 143

Direct Communications I/O 143

direct files

add record' 202

and TIPFCS' 202

cancel update' 207

close file' 203

delete record' 204

flush file' 205

open file' 208

read record' 205

read with lock' 206

update record' 209

D-ISAM Error Codes 308

display

execution stack' 8

menu bar' 104

TIPASK subroutine' 92

TIPASKYN subroutine' 94

title' ... 119

'display

output a line

roll screen' 140

display type

fields' .. 88

dummy

linkage items' 7

dump

force program dump' 35

'dump

snap dump memory' 70

Dump Memory to the Log File 287

dynamic files

access existing file' 215

assign file' 216

close file' 217

create file' 217

definition' 159

introduction' 214

open file' 220

read records' 218

scratch file' 222

write record(s)' 221

dynamic linking 278

dynamic re ... 119

E character

error fields' 84

EBCDIC Code Chart 306

edit buffers

closing' ... 224

delete a line' 225

flush buffer' 226

introduction' 223

open buffer' 227

read line' 226

replace a line' 229

scratch buffer' 230

elective groups

changing with TIPGRPST' 48

retrieval of' 47

Embedded Debugging Statements 285

end

end sequential

set random 176

 Index

September 2011 Draft 2.5 - Confidential 323

online program with TIPRTN' .. 69

EOJ command

and PIB .. 13

'EPSON

printer option' 238

erase

screen' .. 96

'error codes

D 308

Error Codes 307

'error conditions

see status' ... 35

error fields

in screens' ... 84

error message

delivering' 105

example

FCS .. 215

logical file name packet' 165

of FCS .. 227

of program stack' 8

program and screen interaction' ... 84

race conditions' 161

record locking' 161

using TIPFCER' 171

execution stack

program' ... 8

'execution stack

display' ... 8

PIB .. 13

explicit

transaction end' 25

external succession' 310

failed LOGON attempts

and journal file 254

FCC

m and n characters' 119

modifications' 119

sequences' 135

FCC Modifications............................ 119

FCS 13, 161, 168, 170, 174, 175, 176,

177, 178, 179, 181, 183, 184, 185,

186, 190, 191, 192, 193, 195, 196,

197, 198, 200, 201, 202, 203, 204,

205, 206, 207, 208, 209, 210, 211,

212, 213, 215, 216, 217, 218, 220,

221, 222, 223, 224, 225, 226, 227,

229, 230, 233, 234, 235, 236, 240,

241, 249

and indexed files 173

interface packets' 165

interpret errors' 171

overview' 159

summary of functions' 159

'FCS 64, 65, 66, 67, 167, 169, 243

FCS Batch Interface 262

FCS Interface Packets 165

FCS Overview 159

FCS_LOCK

indexed

lock record 188

FCS-ACCESS - Dynamic Access File

... 215

FCS-ADD - Direct Add Record 202

FCS-ADD - Edit Add/Insert Line 223

FCS-ADD - Indexed Add Record 174

FCS-ASSIGN - Dynamic Assign File

... 216

TIP Programming Reference

324 Proprietary IP-622

FCS-CLOSE - Close PCXFER Interface

... 276

FCS-CLOSE - Close TIPPRINT

Interface .. 240

FCS-CLOSE - Direct Close File 203

FCS-CLOSE - Dynamic Close File . 217

FCS-CLOSE - Edit Close Buffer 224

FCS-CLOSE - Indexed Close File ... 175

FCS-CLOSE - Library Close Element

... 233

FCS-CLOSE - Sequential Close File 210

FCS-CREATE - Dynamic Create File

... 217

FCS-DELETE - Direct Delete Record

... 204

FCS-DELETE - Edit Delete Line 225

FCS-DELETE - Indexed Delete Record

... 175

FCS-ESETL - Indexed End Sequential

Mode ... 176

FCS-FLUSH - Direct Flush File 205

FCS-FLUSH - Edit Flush Buffer 226

FCS-FLUSH - Flush PCXFER Buffer

... 275

FCS-FLUSH - Flush TIPPRINT Buffer

... 241

FCS-FLUSH - Indexed Flush File ... 176

FCS-GET - Direct Read Record 205

FCS-GET - Dynamic Read Record(s)

... 218

FCS-GET - Edit Read Line 226

FCS-GET - Indexed Read by Key ... 177

FCS-GET - Indexed Read Sequential

Key .. 178

FCS-GET - Input Record from PC ... 272

FCS-GET - Library Read Next Line 233

FCS-GET - Sequential Read Record 211

FCS-GET-INDEX - Indexed Read for

Key .. 179

FCS-GET-KEYED - Indexed Read by

Key .. 181

FCS-GETRN - Indexed Read by Record

Number ... 185

FCS-GET-SEQ-LOCK - Indexed

WORKAROUND 182

FCS-GET-SEQ-NEXT - Indexed Read

Next Record 183

FCS-GET-SEQ-PREV - Indexed Read

Previous Record 184

FCS-GETUP - Direct Read With Lock

... 206

FCS-GETUP - Indexed Read With Lock

... 186

FCS-HOLD - Hold Resource 167

FCS-JOURNAL - Write User Journal

Record ... 168

FCS-LOCK - Indexed Lock Record 188

FCS-NEXT - Indexed Get Next Record

... 190

FCS-NOUP - Direct Cancel Update 207

FCS-NOUP - Indexed Cancel Update

... 191

FCS-NOUP - Library Close Element

(No update) 234

FCS-OPEN - Direct Open File 208

FCS-OPEN - Dynamic Open File 220

FCS-OPEN - Edit Open Buffer........ 227

FCS-OPEN - Indexed Open File...... 192

FCS-OPEN - Library Open Element 235

FCS-OPEN - Open PCXFER Interface

... 271

FCS-OPEN - Open TIPPRINT Interface

... 243

 Index

September 2011 Draft 2.5 - Confidential 325

FCS-OPEN - Sequential Open File.. 212

FCS-PREV - Indexed Get Previous

Record ... 193

FCS-PUT - Direct Update Record ... 209

FCS-PUT - Dynamic Write Record(s)

... 221

FCS-PUT - Edit Replace Line 229

FCS-PUT - Indexed Rewrite Record 195

FCS-PUT - Library Write Line 236

FCS-PUT - Output Print Line 249

FCS-PUT - Output Record to PC...... 274

FCS-PUT - Sequential Write A Record

... 213

FCS-RELEASE - Release Resource . 169

FCS-SCRATCH - Dynamic Scratch

File .. 222

FCS-SCRATCH - Edit Scratch Buffer

... 230

FCS-SETL - Indexed Set Sequential

Mode ... 196

FCS-SETL-BOF - Indexed Set

Sequential Mode 197

FCS-SETL-EOF - Indexed Set

Sequential Mode 198

FCS-SETL-EQ - Indexed Set Sequential

Mode ... 198

FCS-SETL-GT - Indexed Set Sequential

Mode ... 200

FCS-SKIP - Indexed Skip Sequentially

... 201

FCS-TREN - Mark Transaction End 170

FDES

FDES 166, 217, 232

'FDES

file descriptor packet' 166

field attributes

dynamic re 119

modification' 119

fields

display type' 88

file 164, 192, 202, 203, 204, 205, 207,

208, 209, 210, 211, 212, 213, 216,

233, 235, 241, 249

file descriptor packet' 165, 166

logical file name packet' 165

'file .. 266

'File Control System

see FCS' .. 159

File Control System (FCS) 159

File Descriptor (FDES) Packet 166

file organizations

supported' 159

file system

function codes' 165

File System Function Codes 165

File Transfer Interface Copy Books .. 266

filename' .. 237

files

dynamic' ... 214

permanent

scratching' 222

temporary

scratching' 222

fixed format

message prefix' 143

fixed order

parameter passing' 7

flag bits' ... 31

flag services

TIP Programming Reference

326 Proprietary IP-622

TIPFLAG subroutine' 37

fld .. 107

flush

edit buffers' 226

indexed file 176

print buffer' 241

TIPPRINT buffer' 241

'flush

direct file' 205

force

full screen transmit' 118

program dump' 288

format

of calls to TIPFCS' 164

format handler' 84

FORTRAN

skip codes' 249

full screen

force transmit' 118

output' ... 238

function ... 237

TIPFCS parameter' 164

TIPFLAG functions' 37

Function Calls 154

function codes

file system' 165

function key

input' .. 134

Function Key Input 134

GDA

as serial resource' 25

GDA= keyword' 25

Global Data Area' 25

passed to transaction' 7

GDA - Global Data Area 25

get

data from screen format' 107

direct

read record' 205

read with lock' 206

edit buffers

read line' 226

indexed

get next record......................... 190

get previous record 193

read by key 181

read by record number 185

read for key 179

read next record....................... 183

read previous record 184

read record by key 177

read sequential key 178

read with lock 186

library

read next line' 233

one line from terminal' 142

sequential

read record' 211

TIPASK subroutine' 92

TIPASKYN subroutine' 94

'get

input from terminal' 147

record from queue' 67

TIPPEER record' 59

Get a Record from the Queue - FCS-

GET ... 67

 Index

September 2011 Draft 2.5 - Confidential 327

GETUP

LOCK' .. 27

Global Data Area

see GDA' .. 7

Global Data Area (GDA)

description' 25

'group

PIB ... 13

HEADCHAR=' 124

help

context sensitive' 123

defining help text' 124

HELP... 97

Help Text Definition 124

HELP=' .. 124

hexadecimal

hex to decimal conversion 301

Hexadecimal - Decimal Conversion 301

HIGH... 105

hold

for transaction

HOLD=TR' 163

for update

HOLD=UP' 162

simple

HOLD=YES' 162

'hold

resource

with FCS 167

HOLD=TR' ... 27

HOLD=TR - Record Locking for

Transaction 163

HOLD=UP - Record Locking for Update

... 162

HOLD=YES - Simple Record Locking

... 162

'HP

printer option

Hewlett 238

identifying

unacceptable data fields' 105

IMA

input message area' 310

IMS

emulator' .. 310

program CALL to TIP 310

status codes 312

IMS Status Codes 312

index .. 164

indexed file

get next record 190

add record 174

and TIPFCS 173

cancel update 191

close .. 175

delete record 175

flush .. 176

get previous record 193

lock record 188

open file 192

read by key 177, 181

read by record number................ 185

read for key................................. 179

read next record 183

read previous record 184

TIP Programming Reference

328 Proprietary IP-622

read sequential key 178

read with lock 186

rewrite record 195

sequential (greater than key) 200

sequential at beginning of file 197

sequential at end of file 198

sequential at key 198

set sequential mode 196

skip records sequentially 201

info .. 243

Information Management System(IMS)

... 309

Informational text' 105

INOUT files' 210

input

function key' 134

'input

test for terminal input' 150

INPUT files' 210

Input Message Area (IMA)' 310

insert

line in edit buffer' 223

interface level' 159

interface packet

FCS' ... 165

MCS' 84, 88

interface packet' 86

interpret

FCS error' 171

introduction

to PCS' ... 7

Introduction 151

ISAM' .. 159

journal

prefix .. 254

'journal

record' .. 254

Journal and QBL File Record Format254

journal file ... 260

access batch 260

and failed LOGON attempts 254

close batch 260

open batch 260

read batch 260

record format 254

'journal file

processing' 254

journaled online files' 159

jrn 168, 254, 260

'JRN ... 168

'Julian date' .. 13

key ... 164

LANGUAGE=' 88

'last screen format' 13

LFD' .. 159

LFN

Logical File Name' 159

LI 249

'libbat.a

library' .. 262

librarian services

for screen formats' 84

library

close element (no update)' 234

close element' 233

element

 Index

September 2011 Draft 2.5 - Confidential 329

read next line' 233

write a line' 236

file descriptor' 232

introduction' 231

open element' 235

Library File Descriptor 232

line... 83, 223

add to edit buffer' 223

line oriented

PROMPTX8 subroutine' 138

PARAM subroutine' 135

PROMPT subroutine' 137

PROMPTX subroutine' 138

ROLLPT subroutine' 141

terminal I 133

TEXT subroutine' 142

TEXT80 subroutine' 142

Line Oriented Terminal I/O 133

LINES=' .. 124

linkage items

dummy' .. 7

LINKAGE SECTION' 165

list

pick from a list' 97

'local

queue' ... 61

Local and Remote Queues 61

'locap

PIB ... 13

LOCAP

TIPSUB to another' 71

lock

indexed

lock record 188

LOCK

GETUP' .. 27

lock indicator

PIB ... 27

'lock indicator

PIB ... 13

logical

delete logical record' 172

file name packet' 165

'logical

TIPPEER logical name packet' 53

Logical File Name

LFN' ... 159

Logical File Name Packet 165

Logical Record Delete 172

'LP

Unix spooler' 238

'LPP

lines per page' 238

main storage

areas' .. 7

makefile... 280

mark

transaction end' 170

MASK

with TIPFLAG' 37

MBP

Visual COBOL 85 278

MBP Visual COBOL 85 278

MCS 13, 88, 105, 111, 147

and TIPMSGE' 105

interface packet' 84, 88

TIP Programming Reference

330 Proprietary IP-622

MCS Area' 24

Message Control System' 83

override mechanism' 119

passed to transaction' 7

summary of subroutines' 86

'MCS ... 88

interfaces provided' 83

MCS - MCS Area................................ 24

MCS Interface Packet 88

MCS Screen Formats 84

MCS Subroutines 86

memory

snap dump of' 289

menu

display bar' 104

message

suppression' 243

'message

output to terminal

T 149

Message Control System

see MCS' .. 7

Message Control System (MCS) 83

introduction' 83

MCS Area' 24

Message Formats 143

message prefix

fixed format' 143

Micro Focus

COBOL .. 278

Micro Focus Cobol........................... 307

Micro Focus COBOL Makefile

(make.mf) 281

modifying

field attributes' 119

moving

HIGH ... 105

MSG WAIT

and function key input' 134

MSGAR

and screen formats' 84

MSGFMT

and screen formats' 84

MSGSHOW

and screen formats' 84

native mode program

general structure' 7

native mode program' 133

NOW PRINTING message' 243

NOW PRINTING message suppression'

... 243

number

of stack levels' 8

online

program structure' 7

online program

ending with TIPRTN' 69

Online Program Structure 7

open

direct

open file' 208

dynamic

open file' 220

edit buffer' 227

indexed

open file 192

 Index

September 2011 Draft 2.5 - Confidential 331

library

open element' 235

sequential

open file' 212

'open

TIPPEER conversation' 56

TIPPRINT' 243

TIPQUEUE' 64

Open the Log File 285

Open the Queue - FCS-OPEN 64

OPEN=NO' 210, 212

operator error' 118

optimization

of output messages' 84

order of parameters

in PROCEDURE DIVISION USING

statement' .. 7

output

data to screen format' 111

message optimization' 84

print line' 249

'output

message to terminal

T 149

OUTPUT files' 210

Output for Input Queuing from IMS

Programs 311

overflow status' 243

overlay

current screen' 114

'override

row with PIB 13

packet

interface' .. 86

file descriptor packet (FDES)' 166

logical file name' 165

PARAM .. 134

line oriented subroutine' 135

PARAM - Parameterize Data............ 135

parameter

delimiters' 135

parameterize

an input message' 135

parameterize reply' 134

parameters

automatic passing of' 7

partial screen

transmission of' 118

partitioning an application system' 8

passing

of parameters' 7

PCS

introduction' 7

PCXFER - PC File Transfer 265

'peer ... 30, 52

'peer conversation

close TIPPEER' 57

for server' 59

open TIPPEER' 56

receive TIPPEER record' 59

send TIPPEER record' 58

table of' ... 54

perform a program

with TIPSUB' 71

Performance 265

permanent

TIP Programming Reference

332 Proprietary IP-622

deletion' .. 172

files

scratching' 222

files' .. 214

physical

record delete' 172

Physical Record Deletion 172

PIB ... 13, 27, 35, 41, 43, 45, 75, 81, 111,

162, 202, 203, 204, 205, 206, 207,

208, 209, 210, 211, 212, 215, 216,

217, 220, 222, 223, 226, 229, 243

passed to transaction' 7

Process Information Block' 13

'PIB .. 13

fields used by TIPPEER' 56

PIB - Process Information Block 13

PIB Fields Used 56

PIB-LOCK-INDICATOR Action 27

pick

from a list' .. 97

POC signal

definition of' 134

pop

current screen' 117

POS=' .. 124

Power On Confidence (POC) signal' 134

powers

of 16 ... 302

of 2.. 302

Powers of 16 302

Powers of 2 302

Prepare to use batch Interface Routine

... 262

Primary Peer Conversation for the

TIPPEER Server 59

print

accumulating lines' 238

current screen' 116

destinations' 237

screen' ... 111

TIPPRINT destinations' 238

TIPPRINT facility' 237

PRINT 243, 249

PRINT files' 210

'printer

supported printers' 238

PROCEDURE DIVISION

USING statement

order of five parameters' 7

Process Information Block

see PIB' .. 13

program

and screen interaction

example of' 84

control after CALL' 87

execution stack' 8

execution stack level' 217

native mode' 133

online program structure' 7

program to program data transfer' 8

stack

example of' 8

structure of native mode program'

 ... 7

Program Control after CALL.......... 87

Program Control System

 Index

September 2011 Draft 2.5 - Confidential 333

introduction' 7

Program Control System (PCS) 7

Program Execution Stack 8

prompt

not parameterized' 138

parameterized' 137

the user for text' 138

PROMPT

and lock indicator' 13

line oriented subroutine' 137

PROMPT - Prompt Terminal for Reply

... 137

prompts

issuing' ... 83

PROMPTX

line oriented subroutine' 133, 138

PROMPTX - Prompt for Text........... 138

PROMPTX8

line oriented subroutine' 138

PROMPTX8 - Prompt for Text 139

Provided Interfaces 83

'PS

printer option

postscript' 238

put

library

write line' 236

sequential

write a record' 213

'put

message to terminal

T 149

TIPPEER record' 58

QBL file .. 260

'queue

close' .. 65

get record' 67

local and remote' 61

open' ... 64

write to queue' 66

'queueing

TIPQUEUE description' 30, 60

quick before image' 163

R value

and MCS .. 105

race conditions

and FCS ... 202

race conditions' 161

random

set random mode 176

random mode

place file in

FCS ... 161

'read

see get' ... 107

'receive

TIPPEER record' 59

Receive Record GET 59

record .. 164

add to edit buffer' 223

and FCS 204, 205, 209, 211, 213,

223, 225, 226

delete logical record' 172

how to delete' 172

record' .. 237

record format

TIP Programming Reference

334 Proprietary IP-622

of journal files 254

record lock' 25, 27

record locking

example' ... 161

for transaction' 163

HOLD=TR' 163

HOLD=UP' 162

HOLD=YES' 162

multiple' 162

purpose' 159

simple' .. 162

summary' 163

Record Locking 161

Record Locking Summary 163

'record passing

TIPPEER' ... 54

Record Passing 54

Record-Oriented Program-to-Program

Communications 9

Reference Tables 301

rel .. 202, 204

relative record number' 202

'release

resource

with FCS 169

'remote

queue' ... 61

Request Conversation OPEN 56

rereading

screen contents' 118

'resource

hold with FCS 167

release with FCS......................... 169

RESULT

with TIPFLAG' 37

retrieve elective groups

TIPGRPS subroutine' 47

Return Status from Unix System Calls

... 308

rewrite

indexed

rewrite record 195

ROLL

and TIPPRINT' 238

'ROLL

output a line

roll screen' 140

ROLL - Output Line Roll Screen..... 140

rollback

record locking for transaction' 163

ROLLBACK

and PIB .. 27

and transaction end' 25

ROLLPT

set terminal roll point' 141

ROLLPT - Set Terminal Roll Point .. 141

RPG

PIB ... 13

'run

DOS or Windows program with

TIPWINAP' 80

Sample Log Files 290

sample program

listing of tstwin' 126

'schedule

TIPQUEUE' 63

 Index

September 2011 Draft 2.5 - Confidential 335

scratch

dynamic

scratch file' 222

edit buffer' 230

edit buffers

scratch buffer' 230

screen

and program interaction

example of' 84

erasing' 96

error fields' 84

force transmit' 118

format name' 88

overlay current screen' 114

pop current screen' 117

print current screen' 116

rereading contents' 118

send error text to' 105

'screen

output a line

roll screen' 140

screen format

output data to' 111

'screen format

last used' ... 13

read from' 107

screen formats

librarian services' 84

overview' 84

screen formats' 83

Security ... 265

SEL ... 97

send

error text to screen' 105

'send

TIPPEER record' 58

Send a Record PUT 58

sequential file

close file' .. 210

open file' 212

read record' 211

write a record' 213

'sequential file

and TIPFCS' 210

sequential mode

indexed

at end of file................................ 198

indexed

greater than key 200

set with FCS......................... 196

start at key 198

set a file in' 161

'sequential mode

indexed

at beginning of file' 197

serial resource

GDA as' ... 25

'service

TIPQUEUE schedule' 63

set

terminal roll point' 141

Setting a File in Sequential Mode 161

setuid

UNIX permissions 279

single line

terminal output' 238

TIP Programming Reference

336 Proprietary IP-622

'site name' .. 13

skip

indexed

skip records sequentially 201

skip codes' ... 249

snap dump

memory' ... 289

of memory with TIPSNAP' 70

source .. 296

Source-level Debugging.................... 296

space

field characteristic' 119

stack

climbing the' 8

example of' 8

levels

number of' 8

program execution' 8

'stack

PIB ... 13

start

background program in new window'

 .. 45

background program with

TIPFORK' 43

program at a terminal 41

status

for FCS . 202, 203, 204, 205, 206, 207,

208, 209, 210, 211, 215, 216, 217,

218, 220, 221, 222, 229

for TIPDXC' 35, 41

for TIPFORK' 43

for TIPFORKW' 45

PIB .. 41

'status

and FCS ... 174

FCS 175, 176, 177, 179

for FCS .. 66

for TIPPEER' 56

for TIPUSRID' 79

for fcs..... 65, 67, 168, 175, 176, 178,

181

for TIPGRPST' 48

for TIPMSG' 49

for TIPQUEUE' 64

for TIPRTN' 69

for TIPSUB' 71

PIB .. 13

status codes

IMS .. 312

storage

main areas' ... 7

storage area addresses' 7

structure

of native mode program' 7

STYLE=' ... 124

subroutines

for MCS' .. 86

line .. 83

SUCCESSOR 310

suggestion

coding' .. 8

summary

of MCS subroutines' 86

of record locking' 163

of TIPFCS' 164

'supported

 Index

September 2011 Draft 2.5 - Confidential 337

printers' .. 238

Supported COBOL Compilers 277

'T 147, 149, 150

TAPE files' .. 210

TC 13, 24, 31, 34, 37, 43, 143, 165, 166,

168, 232, 243, 249, 254

'TC 22, 37, 47, 88, 146, 249

Techniques for Deleting Records...... 172

templates

screen formats' 83

temporary

files' .. 214

files

scratching' 222

terminal

destination' 88

line oriented I 133

set roll point' 141

'terminal

PIB ... 13

test for input

T 150

terminal id

PIB ... 13

terminals

supporting FCC' 119

'terminals

using two for debugging' 296

TERMINATION 310

'test

for input

T 150

test for input' 150

testing

screen formats' 84

text

and TIPMSGEO' 107

TEXT .. 138, 142

get line from terminal' 142

TEXT - Get One Line From Terminal

... 142

TEXT80

get line from terminal' 142

TEXT80 - Get One Line From Terminal

... 142

TFD

and screen formats' 84

program' .. 88

T-GET - Get Input 147

time ... 75

PIB ... 13

'time

to wait for input' 13

TIMEOUT=' .. 13

timer

TIPTIMER subroutine' 75

TIP....... 8, 25, 37, 73, 159, 223, 237, 310

'TIP

summary of MCS subroutines' 86

TIP and IMS Interaction 310

TIP Print Facility (TIPPRINT) 237

TIPASK

display line

get answer' 92

TIPASK - Display One Line and Return

Answer .. 92

TIP Programming Reference

338 Proprietary IP-622

TIPASKYN

display line

get answer' 94

TIPASKYN - Display One Line and

Return Answer 94

'tipbatpi.o

interface subroutine' 262

tipbatpi.o Interface Subroutine.......... 263

'tipbatsv

batch interface program' 262

TIPBITS

convert bytes to bits ' 31

TIPBITS - Convert Bytes to Bits 31

tipbstpi.o

entry points 263

TIPBYTES

convert bits to bytes' 34

TIPBYTES - Convert Bits to Bytes 34

TIPDATE

subroutine to get date' 34

TIPDATE - Return Date 34

'TIPDUMP

force program dump' 35

TIPDUMP' .. 288

TIPDUMP - Force Program Dump 35

TIPDXC

and IMS' ... 310

and program stack' 8

delayed transfer control' 35

TIPDXC - Delayed Transfer Control .. 35

TIPERASE

erase screen' 96

TIPERASE - Erase Screen 96

TIPFCER

interpret FCS error' 171

TIPFCS

and direct files' 202

and dynamic files' 214

and indexed files......................... 173

calling format' 164

edit buffers' 223

library files' 231

overview' 159

'TIPFCS

and sequential files' 210

TIPFCS for Direct Files 202

TIPFCS for Dynamic Files 214

TIPFCS for Edit Buffers 223

TIPFCS for Indexed Files 173

TIPFCS for Library Files 231

TIPFCS for Sequential Files 210

TIPFLAG

flag services subroutine' 37

TIPFLAG - Flag Services 37

TIPFORK

and user id' 43

start background program' 43

start program at a terminal 41

TIPFORK - Start Background Program

... 43

TIPFORK - Start Program at a Terminal

... 41

TIPFORKW

start background program in new

window' .. 45

user id

 Index

September 2011 Draft 2.5 - Confidential 339

additional considerations' 45

TIPFORKW - Start Program in New

Window ... 45

TIPGRPS

retrieve elective groups' 47

TIPGRPS - Retrieve Elective Groups . 47

TIPGRPST

change elective groups' 48

TIPGRPST - Change Elective Groups 48

TIPJRNCL

journal close 260

TIPJRNGT

journal read 260

TIPJRNOP

journal open 260

TIPLIST

HELP ... 97

pick from a list' 97

SEL ... 97

TIPLIST - Pick From a List 97

TIPLOG' .. 285

TIPLOG - Updating the Log File...... 285

TIPMENU

display menu bar' 104

TIPMENU - Display Menu Bar 104

'TIPMSG

retrieve error message' 49

TIPMSG - Retrieving Error Messages 49

TIPMSGE

send error text' 105

uses of' .. 105

TIPMSGE - Send Error Text To Screen

... 105

TIPMSGEO

define deferred error text' 107

TIPMSGEO - Define Deferred Error

Text ... 107

TIPMSGI

and lock indicator' 13

read data from screen format' 107

use of' ... 84

TIPMSGI - Read Data from Screen

Format ... 107

TIPMSGO

MCS ... 111

output data to screen format' 111

use of' ... 84

TIPMSGO' .. 88

TIPMSGO - Output Data to Screen

Format ... 111

TIPMSGOV

overlay current screen' 114

TIPMSGOV - Overlay Current Screen

... 114

TIPMSGPR

print current screen' 116

TIPMSGPR - Print Current Screen ... 116

TIPMSGRS

pop current screen' 117

TIPMSGRS - Pop the Current Screen

... 117

TIPMSGRV

force full screen transmit' 118

TIPMSGRV - Force Full Screen

Transmit .. 118

TIPPAGE Paging API....................... 152

'TIPPEER

TIP Programming Reference

340 Proprietary IP-622

close conversation' 57

get a record' 59

logical name packet' 53

open conversation' 56

peer ... 30, 52

PIB fields used' 56

primary peer conversation for server'

... 59

record passing' 54

send a record' 58

table of typical conversation' 54

transaction processing' 60

TIPPEER - Peer-to-Peer Processing ... 52

TIPPEER Logical Name Packet 53

TIPPRINT

AUX0' .. 238

AUX1' .. 238

print subroutine' 237

ROLL' ... 238

'TIPPRINT

open' ... 243

TIPPRINT Buffering' 249

TIPPRINT Print Destinations 238

TIPPRINTAUX

environment variable' 238

'TIPQUEUE

calling' .. 64

close' ... 65

description' 30, 60

get record' 67

local and remote queues' 61

open queue' 64

service time schedule' 63

write to queue' 66

TIPQUEUE - Record Queuing 60

TIPQUEUE Interface (API) 64

TIPQUEUE Service Time Schedule ... 63

TIPRTN

and lock indicator' 13

end online program' 69

summary' .. 7

TIPRTN - End Online Program 69

TIPSNAP

snap dump memory' 289

TIPSNAP - Snap Dump Memory 70

TIPSUB

and lock indicator' 13

perform a program' 71

to another LOCAP' 71

TIPSUB - Perform Program................ 71

TIPSUBP - Call a Subprogram 74

TIPTERM

terminal functions' 146

'TIPTERM

get input

T 147

output message

T 149

test for input

T 150

TIPTERM' ... 143

TIPTERM Functions 146

TIPTIMER

wait for n seconds' 75

TIPTIMER - Timer Services 75

TIPTITLE

 Index

September 2011 Draft 2.5 - Confidential 341

display title' 119

TIPTITLE - Display Title 119

tipusr

where is user 78

TIPUSR - Where is User..................... 78

TIPUSRID

user information subroutine' 79

TIPUSRID - User Information............ 79

'TIPWINAP

run a DOS or Windows program 80

TIPWINAP - Run a DOS or Windows

Program ... 80

TIPXCTL

and IMS' ... 310

and program stack' 8

transfer control' 81

TIPXCTL - Transfer Control 81

title

display title' 119

'TOF

top of form' 238

T-PUT - Output Message 149

transaction

end' ... 25

end

deferral of' 25

explicit end' 25

id

PIB .. 13

initiation' 25

record locking for' 163

termination' 25

'transaction

mark end' 170

processing with TIPPEER' 60

Transaction End 25

Transaction Processing Using TIPPEER

... 60

transfer

data from program to program' 8

transfer control

with TIPXCTL' 81

transmitting

partial screen' 118

truncated input

message' ... 143

tstwin

and MCS windowing features' 126

sample program listing' 126

TSTWIN - Sample TIP/ix Program .. 126

T-TEST - Test For Input 150

Types of Executables 279

U character

uppercase data fields' 84

unacceptable

data fields

identifying' 105

unique screen formats' 84

UNIX permissions

setuid .. 279

Unix Shell Error............................... 307

update

direct

update record' 209

indexed

rewrite record 195

TIP Programming Reference

342 Proprietary IP-622

updating

screen formats' 84

uppercase data fields' 84

'UPSI

PIB ... 13

user

security level' 13

USER .. 79

user id

and TIPFORK' 43

PIB .. 13

with TIPFORKW' 45

user information

TIPUSRID subroutine' 79

USING statement

order of five parameters' 7

utilities

calling' .. 73

V DI .. 249

validation of data' 105

wait .. 75

wait for n seconds' 75

WHOSON

display execution stack' 8

windowing features

sample program' 126

WORK .. 7, 24

'work area

PIB ... 13

Work Area' .. 7

Work-Area .. 24

'write

to queue' ... 66

user journal record' 254

Write a Record to a Queue - FCS-PUT

... 66

Write a Text Message to the Log File286

'WRK=

and PIB .. 13

XI$BATCH

equivalent....................................... 262

